Natali-0706
?>

Lm и pk - диаметры в окружности с центром о. центральный угол lok равен 34 градусам. найдите угол pkm. ответ дайте в градусах.

Геометрия

Ответы

Кириллов57
LOK = POM = 34
∧POM -  равнобедренный ⇒ ∠МРО = ∠РМО = (180 - 34)/2 = 73 
∧PКM прямоугольный ∠ РКМ = 180 - 90 - 73 = 17
Bogataya Vladimir318
Центр вписанной окружности лежит на биссектрисе угла. Биссектриса - геом. место точек, равноудаленных от сторон угла. Если окружность касается сторон угла, ее центр удален от сторон угла на радиус, следовательно лежит на биссектрисе угла.

Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.

Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.
ogofman
Ага
Итак, NK=\frac{1}{3}BK=\sqrt{3}. Значит, DK=2NK=2\sqrt{3}. Считаем площадь равнобедренного ADC=\frac{6*2 \sqrt{3} }{2}=6\sqrt{3}. Получаем, наконец, площадь полной поверхности: 3\sqrt{3}+3*6\sqrt{3}=21\sqrt{3} (площадь основания плюс площади трех боковых граней).
Переходим к объему. Объем пирамиды равен одной трети произведения площади основания на высоту. В нашем случае это площадь ABC, а высота - DN. Найдем DN по теореме Пифагора из знакомого нам DNK. DN=\sqrt{ DK^{2} - NK^{2} }= \sqrt{ (2 \sqrt{3}) ^{2}- (\sqrt{3}) ^{2} }=3. И наконец, V=9\sqrt{3}*3=27 \sqrt{3}
Уффф. Извини, что так долго ждать заставил - замучился формулы писать. Перепроверь подсчеты, а в остальном - как-то так.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Lm и pk - диаметры в окружности с центром о. центральный угол lok равен 34 градусам. найдите угол pkm. ответ дайте в градусах.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Вакуленко
Людмила902
Ирина-Макаркина253
Оксана Николаевич
info49
BirUlek215
spec-nt
bogdanyukn562
wwladik2606222
Надья-Олеговна
sveta1308
Пронкина_TEST1682
anastasiavilina
heodbxbbshe
d111180