∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°
Объяснение:
1) т.к. это смежные углы, угол 2 = 180 - угол 1 = 180 - 150 = 30
ответ: 30 градусов
2) т.к. вертикальные углы равны ( угол 2 = углу 4 и угол 1 = углу 3 )
угол 1 = 34 => угол 3 равен 34, угол 2 = 360 ( сумма всех углов ) -
68 ( сумма углов 1 и 3 ) и полученное число поделить на 2 => (360 - 68)/2 = 146. Т.к. углы 2 и 4 равны, то они равны 146, и углы 1 и 3 равны и равны 34. ответ: 146 и 34 градуса
3) Пусть угол 1 - x, а угол 2 - 4x
Т.к. сумма смежных углов равна 180 градусам, то составим уравнение:
x + 4x = 180
5x = 180
x = 36 (угол 1) => 4x = 144
ответ: угол 1 = 36 градусам, а угол 2 = 144 градусам
P.S. Можешь отметить как лучший
Удачи)
Поделитесь своими знаниями, ответьте на вопрос:
Угол при вершине равнобедренного треугольника равен 120 градусов, а боковая сторона равна 3. найдите радиус описанной около треугольника окружности.