Объяснение:
Да ладно, напишу решение.
По свойству отрезков касательных из одной точки сразу ясно, что периметр А1В1С (без 1) равен УДВОЕННОМУ отрезку от вершины С до точки касания АС с вписанной окружностью. Это на самом деле уже ВСЁ решение, но я продолжу :))
Надо найти r - вписанной окружности и угол С (точнее, надо найти ctg(C/2));
По формуле Герона считаем площадь треугольника, она равна 6*√6; полупериметр 9; отсюда r = 2*√6/3;
по теореме косинусов
7^2 = 5^2 + 6^2 - 2*5*6*cos(C); откуда cos(C) = 1/5; ctg(C/2) = √6/2;
Поэтому искомая величина равна
2*r*ctg(C/2) = 2*(6*√6)*(√6/2) = 4
Поделитесь своими знаниями, ответьте на вопрос:
Может ли при движении сторона параллелограмма отображаться на противоположную сторону ?
Верхняя картинка : Рассмотрим треугольники MON и EOF. У них угол Е = углу N, EO=ON ( по условию). Угол EOF = углу MON (как вертикальные). Из этого следует, что треугольники MON и EOF равны по второму признаку равенства треугольников (два угла и сторона)
Нижняя картинка : Рассмотрим треугольники ACB и ADB. У них угол АBС= углу АВD, CB=DB ( по условию). АВ - общая сторона. Из этого следует, что треугольники ACB и ADB равны по второму признаку равенства треугольников (две стороны и угол между ними)
Объяснение: