Впрямоугольном треугольнике abc угол c=90 проведена высота cd и медиана ce. площади треугольников abc и cde равны соответственно 10 и 3. найти ab не используя из интернета!
Пусть АС=а, ВС=в, АВ=с. Высота в прямоугольном тр-ке, проведённая к гипотенузе: СД=ав/с. Площадь тр-ка АВС: S=ав/2=10 ⇒ ав=20. Площадь тр-ка СДЕ: s=CД·ДЕ/2=ав·ДЕ/2с=10·ДЕ/с ⇒ ДЕ=s·c/10=3c/10. В прямоугольном тр-ке СДЕ ДЕ²=СЕ²-СД². СЕ - медиана, проведённая к гипотенузе, значит СЕ=АВ/2=с/2. ДЕ²=(с/2)²-(20/с)²=(с²/4)-(400/с²)=(с⁴-1600)/4с². Объединим два полученных уравнения стороны ДЕ, одновременно возведя первое в квадрат: 9с²/100=(с⁴-1600)/4с², 36с⁴=100с⁴-160000, 64с⁴=160000, с⁴=2500, с=√50=5√2 - это ответ. Не проверял как эта задача решена в интернете. Надеюсь моё решение будет оригинальным.
mashiga2632
02.03.2020
Нехай прямі АВ та СМ перетинаються в т.О. Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою. Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою. Нехай ∠СОВ+∠ВОМ+∠АОМ=286°. Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної. Сума суміжних кутів дорівнює 180°. ∠СОВ+∠ВОМ=180°, бо вони суміжні. ∠АОМ+∠АОС=180°, бо вони суміжні. Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°: ∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180° ∠СОВ+∠ВОМ+∠АОМ+∠АОС=360° Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить 286°+∠АОС = 360° ∠АОС=360-286 ∠АОС=74°. Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то ∠СОВ+74°=180° ∠СОВ=180°-74° ∠СОВ=106°. Виходить, що ∠СОВ=∠АОМ=106°.
Впрямоугольном треугольнике abc угол c=90 проведена высота cd и медиана ce. площади треугольников abc и cde равны соответственно 10 и 3. найти ab не используя из интернета!
Высота в прямоугольном тр-ке, проведённая к гипотенузе: СД=ав/с.
Площадь тр-ка АВС: S=ав/2=10 ⇒ ав=20.
Площадь тр-ка СДЕ: s=CД·ДЕ/2=ав·ДЕ/2с=10·ДЕ/с ⇒ ДЕ=s·c/10=3c/10.
В прямоугольном тр-ке СДЕ ДЕ²=СЕ²-СД².
СЕ - медиана, проведённая к гипотенузе, значит СЕ=АВ/2=с/2.
ДЕ²=(с/2)²-(20/с)²=(с²/4)-(400/с²)=(с⁴-1600)/4с².
Объединим два полученных уравнения стороны ДЕ, одновременно возведя первое в квадрат:
9с²/100=(с⁴-1600)/4с²,
36с⁴=100с⁴-160000,
64с⁴=160000,
с⁴=2500,
с=√50=5√2 - это ответ.
Не проверял как эта задача решена в интернете. Надеюсь моё решение будет оригинальным.