Irina
?>

Стороны параллелограмма относятся как 3: 1 а его периметр= 160 см. найти стороны параллелограмма.

Геометрия

Ответы

aeykin
Нехай стороны паралелограма доривнюе 3:1. За умовою задачи видомо, що периметр паралелограма доривнюе 160см. 3k+1k=160cм 4k=160 k=160:4 k=40
Эдгеева219
Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70.
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. 
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. 
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.

ответ: х=70°
99 , 9 класс. найдите угол между меньшей стороной и диагональю прямоугольника, если он на 70градусов
cvetprint
Отрежем от ромба его диагональю треугольник. Если ромб был АВСД, то берём треугольник АВС. Он равнобедренный, т.к. АВ=ВС. Значит отрезок, соединяющий середины сторон АВ и ВС является средней линией равнобедренного треугольника, а значит этот отрезок параллелен основанию АС.
Аналогично повторяем рассуждения для треугольника AДС, и понимаем, что отрезок, соединяющий середины сторон АД и ДС есть средняя линия, значит он параллелен АС.
Итак, имеем, что обе средние линии - треугольников АВС и АДС параллельны диагонали ромба АС, следовательно они параллельны друг другу.

Повторяем те же рассуждения для второй диагонали ромба - ВД, и так же получаем параллельность второй пары отрезков.

Следовательно, четырёхугольник, вершинами которого являются середины сторон ромба, является параллелограммом. 

Далее, из симметрии ромба, замечаем, что обе диагонали этого получившегося четырёхугольника проходят через центр ромба, и равны между собой.

Параллелограмм, у которого диагонали равны - это и есть прямоугольник - что и требовалось доказать.

Ну, я бы так доказывал. Может кто-нибудь предложит более простой

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стороны параллелограмма относятся как 3: 1 а его периметр= 160 см. найти стороны параллелограмма.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kolyabelousow4059
Носов Тоноян
filantropagv4
Васильевичь Виктория457
Сор по геометрии 9 класс можете
mv7095
amayonova
twisty20075004
mez-omts-d5
MDubovikov73
andrew409
samofar
julichca68
and-syr
irina25095462
rsd737