Прямоугольник - частный случай параллелограмма, тогда , пусть биссектриса AM. Углы Bma и dam - накрест лежащие при параллельных прямых bc и ad, а значит они равны, тогда, угол dam= углу bam , т.к. Am бисскетриса. Тогда рассмотрим треугольник abm , у него угол bam = углу bma. А это углы при осоновании, значит , треугольник abm равнобедренный и bm=ab=8см ( по условию) Т.к. abcd- параллелограмм , то ab=cd и dc=ad. ( свойство параллелограмма. bm+mc= bc= 8+8=16см=ad ab=bm=8см=cd Периметр= 16+16+8+8=48 ответ : 48см
tarasovs
29.02.2020
1) На стороне угла отложим отрезок AB = n. 2) Построим точку С, являющуюся пересечением дуг радиусом r c центрами в точках A и B. 3) Построим прямую l через точку С, параллельную AB. 4) Построим биссектрису данного угла. О - точка пересечения биссектрисы и прямой l. 5) Построим искомую окружность радиусом r с центром в точке O.
Треугольники ACB, A1OB1, A2OB2 равнобедренные по построению, боковые стороны равны r. Высоты этих треугольников также равны (CH, OH1 - расстояния между параллельными прямыми; OH1, OH2 - расстояния между точкой биссектрисы и сторонами угла). Равнобедренные треугольники с равными боковыми сторонами и равными высотами - равны (следует из равенства по гипотенузе и катету прямоугольных треугольников, на которые высота разбивает равнобедренные треугольники). AB=A1B1=A2B2=n.
Leobed917670
29.02.2020
Выделим полные квадраты в подкоренных выражениях:
Для решения задачи используем векторную интерпретацию функции. Пусть вектор a , а вектор b Здесь векторы заданы своими координатами.
Найдём координаты суммы этих векторов. a + b = Тогда его длина
Найдём длины каждого из введённых векторов. Очевидно, что они равны первому и второму слагаемым соответственно:
А теперь воспользуемся неравенством треугольника для двух векторов.
А именно, Это неравенство обращаем остриём вправо:
Наше выражение - это ни что иное, как сумма длин введённых векторов. Справа стоит длина суммы векторов, которую мы знаем. Отсюда получаем наименьшее значение функции:
Необходимо найти теперь точку, в которой достигается это наименьшее значение. Проще всего это сделать из нашего же неравенства треугольника. В нужной точке, разумеется, достигается равенство. Равенство в неравенстве треугольника достигается при условии сонаправленности векторов. Воспользуемся им.
Замечаем, что вторая координата первого вектора в корень из 3 раз больше соответствующей координаты второго. У сонаправленных векторов координаты пропорциональны. Значит,
Решая это уравнение, мы получаем, что В этой точке достигается наименьшее значение функции.
Тогда рассмотрим треугольник abm , у него угол bam = углу bma. А это углы при осоновании, значит , треугольник abm равнобедренный и bm=ab=8см ( по условию)
Т.к. abcd- параллелограмм , то ab=cd и dc=ad. ( свойство параллелограмма.
bm+mc= bc= 8+8=16см=ad
ab=bm=8см=cd
Периметр= 16+16+8+8=48
ответ : 48см