(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.
ответ:
контрольная 2:
1) рассмотрим треугольники aod и сов:
ао=ов
со=od
угол aod = угол сов, т к они вертикальные
трегольник аоd = трегольник сов по 1 признаку
2)т.к треугольник авс - равнобедренный, то ак - биссектриса и медиана => ск = кв = сd/2 = 12
рассмотрим треугольник акв:
ак = 16
кв = 12
ав = 20
р = ак + кв + ав = 16 + 12 + 20 = 48
3)т.к. угол м = угол n, то треугольник мкn - равнобедренный => мк=кn
p=mk+kn+mn=170
mk+kn=170-54
mk+kn=116
mk=kn=116: 2=58
4) ab=x
ac=x+10
bc=2x
x+x+10+2x=70
4x+10=70
4x=60
x=15
ac=15+10=25
bc=15*2=30
5)т.к. см и ак - медианы, то ам=ск => треугольники амс и акс равны по 1 признаку => углы амс и акс равны
Поделитесь своими знаниями, ответьте на вопрос:
Верно ли следующее утверждение : "прямая параллельна плоскости, если она параллельна прямой лежащей в этой плоскости? "