Дано :
Четырёхугольник ABCD.
Отрезок АЕ - биссектриса ∠BAD.
∠EAD = 30°.
∠C = 70°.
∠D = 110°.
Найти :
∠В = ?
Рассмотрим прямые ВС и AD, которые пересечены секущей CD.
Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то эти прямые параллельны.∠С и ∠D - внутренние односторонние.
∠С + ∠D = 70° + 110° = 180°
Тогда по выше сказанному ВС ║ AD.
Рассмотрим эти же прямые, но тогда, когда они пересечены секущей АЕ.
При пересечении параллельных прямых секущей накрест лежащие углы равны.∠EAD и ∠ВЕА - накрест лежащие.
Тогда по выше сказанному -
∠EAD = ∠ВЕА = 30°.
Рассмотрим ΔАВЕ.
Биссектриса угла треугольника - это отрезок, который делит угол на два равных угла.То есть -
∠ВАЕ = ∠EAD = 30°.
Сумма внутренних углов треугольника равна 180°.Следовательно -
∠ВАЕ + ∠В + ∠EAD = 180°
∠В = 180° - ∠EAD - ∠ВАЕ
∠В = 180° - 30° - 30°
∠В = 120°.
120°.
Поделитесь своими знаниями, ответьте на вопрос:
Вромбе abcd , где o точка пересечния диагоналей bd и ac, угол odc равен 38° , найдите углы треугольника aob
сумма углов ромба, прилежащие к одной стороне, равны 180,
диагонали ромба, кроме того, являются биссектрисами, из всего следует:
угол В=углу Д, угол А=углу С
по условию угол ОДС=38, значит, угол ОСД=180-90(угол СОД)-38=52
отсюда в треугольнике АОВ:
угол О=90, угол В=38, угол А=52