Объяснение:
а) Если две хорды в окружности пересекаются, то произведение отрезков одной хорды, равно произведению отрезков другой.
То есть: АО*СО=ВО*DO
x*(x+10)=(x+2)(x+4)
x²+10x=x²+4x+2x+8
x²–x²+10x–4x–2x=8
4x=8
x=2
ответ: 2.
b) Если из одной точки к окружности проведены две секущие, то произведение одной секущей, на её внешнюю часть, равно произведению другой секущей на её внешнюю часть.
То есть: RG*RW=RL*RN
(RW+WG)*RW=(RN+NL)*RN
(4+8)*4=(3+x)*3
48=9+3x
3x=39
x=13
ответ: 13
с) Если из одной точки к окружности проведены две секущие, то произведение одной секущей, на её внешнюю часть, равно произведению другой секущей на её внешнюю часть.
То есть:
AD*AC=AM*AB
(AC+CD)*AC=(AB+BM)*AB
(x+x–2)*x=(4+x+1)*4
2*(x–1)*x=(5+x)*4
x²–x=10+2x
x²–x–2x–10=0
x²–3x–10=0
Д=(–3)²–4*1*(–10)=9+40=49
Так как длина задаётся положительным числом, что х=5.
ответ: 5
d) Если из одной точки к окружности проведена касательная и секущая, то квадрат отрезка касательной будет равен произведению отрезка секущей на её внешнюю часть.
То есть:
МК²=МН*МР
МК²=(МР+РН)*МР
6²=(2х+4)*4
36=8х+16
8х=20
х=2,5
ответ: 2,5
е) Если из одной точки к окружности проведена касательная и секущая, то квадрат отрезка касательной будет равен произведению отрезка секущей на её внешнюю часть.
То есть:
АМ²=АЕ*АО
АМ²=(АО+ОЕ)*АО
16²=(х+х+16)*х
256=(2х+16)*х
2х²+16х=256
х²+8х–128=0
Д=8²–4*1*(–128)=64+512=576
Так как длина не может быть отрицательной, то х=8.
ответ: 8.
f) Если из одной точки к окружности проведены две секущие, то произведение одной секущей, на её внешнюю часть, равно произведению другой секущей на её внешнюю часть.
То есть:
ON*OS=OA*OK
(OS+SN)*OS=(OK+KA)*OK
(x+5+x)*x=(5+5+x)*5
(2x+5)*x=(10+x)*5
2x²+5x=50+5x
2x²+5x–5x=50
x²=25
Совокупность:
х=√5
х=–√5
Так как длина – положительное число, то х=√5
ответ: √5
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
Поделитесь своими знаниями, ответьте на вопрос:
Определите какие из данных векторов коллинеарные : a{4; 6} , b{-8; -12} , c{6; 4} , d{-2; 3} , f{2; 3}?