Объяснение:
Чтобы найти площадь сечения, которое является кругом, нужно знать его радиус r. Найдем его, рассмотрев сечение шара плоскостью, перпендикулярной искомому сечению (тому, площадь которого мы должны найти). (Смотри рисунок.)
Рассматриваемое сечение - тоже круг, его центр О совпадает с центром шара, а радиус R = 25 см. Проведем хорду АВ. Это - диаметр искомого сечения. Расстояние до него - длина перпендикуляра, опущенного на АВ из точки О (обозначим его ОН). Длина этого перпендикуляра h = 20 см. Получился прямоугольный треугольник ОАН с гипотенузой R и катетами h и r. По теореме Пифагора найдем r:
.
Теперь находим площадь сечения:
≈706,86
1) Пусть точка C - точка пересечения отрезков AB и MK.
Тогда по первому признаку равенства треугольников (две стороны и угол между ними) будут равными треугольники AKC и CBM.
А значит и углы тругольников AKС и СMB равны. Из этого следует, по теореме о параллельных прямых, так как накрест-лежащие углы (AKС и СMB) равны, то отрезки AK и MB параллельны.
2) См. рисунок.
Так как CH- биссектриса, то углы KCH и HCT равны между собой и равны половине угла KCP, т.е. 29°.
Так как CK и TH параллельны, то накрест-лежащие углы KCH и CHT равны, также 29°.
Угол CTH = 180 - HCT - CHT =180-29-29=122°.
Таким образом углы в треугольнике CHT: 29, 29, 122.
Поделитесь своими знаниями, ответьте на вопрос:
Периметр ромба равен 22, 8 см. вычисли сторону ромба. сторона ромба равна см.