Определите, является ли отрезок AB диаметром окружности x²+6x+y²=0, если А(-1 ;√5) , В(-5 ;-√5).
Объяснение:
1) Преобразуем уравнение окружности (выделим полные квадраты, если это возможно) : x²+6x+y²=0 , x²+6x+9-9+y²=0,
(х+3)²+у²=9, (х+3)²+у²=3² . Центр имеет координаты О(-3 ;0) , r=3.
2) Если АВ-диаметр , то
А и В принадлежат окружности ( координаты удовлетворяют уравнению окружности) :для А(-1 ;√5) → (-1)²+6*(-1)+√5²=1-6+5=0, 0=0 , лежит на окружности;
для В(-5 ;-√5)→ (-5)²+6*(-5)+(-√5)²= 25-30+5=0, 0=0 ,
лежит на окружности;
расстояние между А и О равно 3 : АО=√( (-3+1)²+(0+√5)²)=√( 4+5)=3Все условия выполнены, значит АВ-диаметр окружности x²+6x+y²=0.
Поделитесь своими знаниями, ответьте на вопрос:
Стороны параллелограмма относятся как 1 : 2 а его периметр равен 30 см найдите стороны параллелограмма
Периметр - сумма длин всех сторон
1 часть = х
х+х+2х+2х=30
6х=30
х=5
Стороны равны 6 и 6*2=12 см
Если Вам это то поставьте 5 звёзд и нажмите