Нехай задано рівнобічну трапецію ABCD, основи паралельні AD||BC, сторони AB=CD рівні між собою, BH⊥AD, де BH=12 см – висота трапеції, опущена на сторону AD,
AH=5 см, HD=11 см, звідси AD=AH+HD=5+11=16 см.
Розглянемо прямокутний трикутник ABH (∠AHB=90) та знайдемо за формулою Піфагора гіпотенузу AB:
AB^2=AH^2+BH^2, звідси
Оскільки трапеція ABCD – рівнобічна, то відповіні сторони рівні CD=AB=13 см.
Опустимо ще одну висоту CK на сторону AD, тоді кут прямий CK⊥AD (∠CKD=90).
Розглянемо прямокутні трикутники ABH і KCD.
У них ∠BAH=∠CKD – як кути при основі AD у рівнобічній трапеції ABCD (за властивістю), і CD=AB=13 см.
Тому, за ознакою рівності прямокутних трикутників, трикутники ABH і KCD рівні (за гіпотенузою і гострим кутом), звідси слідує AH=KD=5 см.
Тоді у рівнобічній трапеції:
HK=HD-KD=11-5=6 см, тому BC=HK=6 см.
Знайдемо периметр рівнобічної трапеції ABCD:
P=AB+BC+CD+AD=13+6+13+6=48 см.
Відповідь: 48 см – В.
Приклад 32.12 Дві менші сторони прямокутної трапеції дорівнюють a, а один з її кутів – 450.
Визначити площу трапеції.
Обчислення: Наведемо рисунок прямокутної трапеції
У трапецію ABCD відомо: AD||BC, AB⊥AD, AB=BC=a – менші сторони трапеції, ∠ADC=45 (як єдиний гострий кут прямокутної трапеції).
Оскільки бічна сторона перпендикулярна до основи AB⊥AD, то AB=a – висота прямокутної трапеції.
Опустимо ще одну висоту CK на сторону AD, тобто CK⊥AD (∠CKD=90).
Очевидно, що вона також рівна заданій стороні CK=AB=a.
У прямокутному трикутнику KCD (∠CKD=90, ∠CDK=45), тому ∠DCK=45 (за сумою кутів трикутника), і робимо висновок,що трикутник ΔKCD – рівнобедрений.
Тобто, CK=DK=a (тут AK=BC=a як протилежні сторони квадрата ABCK).
Звідси AD=AK+KD=a+a=2a.
Знайдемо площу прямокутної трапеції:
Цю площу можна було знайти в легший б, розписавши як суму площ квадрата S[ABCK]=a^2 і прямокутного трикутника S[kcd]=a^2/2
Відповідь: 3/2•a^2 – Д.
Приклад 32.15 Точка O, яка є перетином діагоналей трапеції ABCD (AD||BC), ділить діагональ AC на відрізки AO=8 см і AC=4 см.
Знайти основу BC, якщо AD=14 см.
Обчислення: Нехай маємо трапецію ABCD, AD||BC, AD=14 см, AC=4 см, AO=8 см, де AC і BD – діагоналі трапеції ABCD, які перетинаються в точці O.
Розглянемо трикутники AOD і COB.
В них ∠AOD=∠COB як вертикальні.
∠OAD=∠OCB і ∠ADO=∠CBO як внутрішні різносторонні кути при перетині січною AC паралельних прямих AD і BC.
Звідси слідує, що ΔAOD~ΔCOB (тобто трикутники подібні за трьома кутами).
З цього слідує, що їх відповідні сторони пропорційні, тобто
звідси
Отже, BC=7 см – основа трапеції.
Відповідь: 7 см – В.
Приклад 32.16 Менша основа трапеції дорівнює 20 см. Точка перетину діагоналей віддалена від основ на 5 і 6 см.
Знайдіть площу трапеції.
Обчислення: До умови задано рисунок, який має вигляд
Для трапеції записуємо все що на момент прочитання умови відомо:
AD||BC, BC=20 см, MO=5 см, ON=8 см, де AC і BD – діагоналі трапеції ABCD, які перетинаються в точці O, MO та ON – відстані від точки O до основ трапеції BC і AD, відповідно (тобто MO⊥BC, ON⊥AD).
Розглянемо трикутники AOD і COB. В них ∠AOD=∠COB як вертикальні.
∠OAD=∠OCB і ∠ADO=∠ CBO як внутрішні різносторонні кути при перетині січною AC паралельних прямих AD і BC.
Звідси робимо висновок, що ΔAOD~ΔCOB (тобто трикутники подібні за трьома кутами).
З цього слідує, що їх відповідні сторони (а значить і висоти MO та ON цих трикутників) пропорційні, тобто
звідси
Оскільки MO⊥BC, ON⊥AD, то MN⊥AD (або MN⊥BC), звідси слідує, що MN – висота трапеції (тобто точки M, O і N лежать на одній прямій).
Отже, MN=MO+ON=5+6=11 см.
Знайдемо площу трапеції:
Відповідь: 242 см2 – Г.
18 см
Объяснение:
1) DE является средней линией треугольника АВС, так как соединяет середины равных боковых сторон, в силу чего DE ║ АВ.
DE как средняя линия треугольника АВС равна половине той стороны, которой она параллельна, то есть:
DE = AB : 2 = 16 : 2 = 8 см.
2) В точке пересечения медианы делятся в отношении 2:1, считая от вершины. Следовательно:
FE = AE : 3 = 15 : 3 = 5 см
3) DB = AE - как медианы, проведённые к равным сторонам равнобедренного треугольника; следовательно:
DF = DB : 3 = 15 : 3 = 5 см
4) Периметр треугольника DFE:
Р = DE + DF + EF = 8 + 5 + 5 = 18 см
ответ: 18 см
Поделитесь своими знаниями, ответьте на вопрос:
ответьте на это 1. если вектора а и b коллинеарные и а не нулевой вектор, то … 2. на плоскости любой вектор можно разложить по двум данным неколлинеарным векторам, при чём … 3. для прямоугольной системы координат нужно … 4. координатные вектора … 5. координаты вектора … 6. координаты равных векторов… 7. каждая координата суммы двух и более векторов равна … 8. каждая координата разности двух векторов равна … 9. каждая координата произведения вектора на число равна … 10. радиус-вектор – это …. 11. координаты конца радиус-вектора равны … 12. формула для вычисления координат вектора по координатам его конца и начала… 13. формула для вычисления координат середины отрезка по координатам его концов… 14. формула для вычисления длины вектора по его координатам… 15. формула для вычисления расстояний между двумя точками по их координатам… 16. уравнение окружности имеет вид … 17. уравнение окружности с центром в начале координат имеет вид … 18. уравнение прямой имеет вид… 19. угловой коэффициент прямой… 20. две параллельные прямые имеют … угловые коэффициенты. 21. уравнение оси абсцисс … 22. уравнение оси ординат … 23. окружность лежит одна внутри другой, если расстояние между центрами … 24. окружность лежит вне другой, если расстояние между центрами … 25. окружности касаются изнутри, если расстояние между центрами … 26. окружности касаются извне, если расстояние между центрами … 27. окружности пересекаются в двух точках, если расстояние между центрами …
2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат.
Для координат векторов справедливы следующие свойства:
1. Каждая координата суммы векторов равна сумме соответствующих координат.
2. Каждая координата разности векторов равна разности соответствующих координат.
3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
4. Каждая координата вектора равна разности соответствующих координат его конца и начала.