Так как <CMA=90° (дано), значит и <CMB=90°, так как эти углы смежные. => ВС - диаметр окружности. Следовательно, <BNC=90°, так как он вписанный и опирается на диаметр. Точка О - пересечение высот треугольника АВС, значит и АК - высота этого треугольника. В прямоугольном треугольнике АМС угол МСВ равен 30°, следовательно, угол МВС равен 60° (сумма острых углов в прямоугольном треугольнике равна 90°) Тогда в прямоугольном треугольнике АВК катет АК = АВ*Sin60 = 8*√3/2 =4√3.
ответ: АК = 4√3 ед.
В правильной треугольной пирамиде вершина проецируется в центр основания - правильного треугольника. Этот центр делит высоту основания в отношении 2:1, считая от вершины треугольника. Высота треугольника равна (√3/2)*а, где а - сторона треугольника. В нашем случае h=(√3/2)*9. Тогда АО = (2/3)*h - это катет прямоугольного треугольника, образованного высотой пирамиды (второй катет) и ребром пирамиды (гипотенуза). АО=(√3*9/2)*(2/3) = 3√3. По Пифагору найдем высоту пирамиды: Н=√(SA²-(АО)²) или Н=√(36-27) = 3см. Это ответ.
Поделитесь своими знаниями, ответьте на вопрос:
а) т.к точки К и М э то середины сторон следовательно отрезок КМ - это средняя линия треугольника, а значит он паралельна третьей стороне и равна ее половине. следовательно АКМС трапеция ( потому что 2 стороны паралельны, а две не паралельны)
б)КМ=5
Р=5+10+5+5=25