1.
Так как 2 внешних угла треугольника ABC друг другу равны(<CBM == <ACF), то вторая пара соседних вертикальных внешних углов тоже равна (<ABC == <ACB (рис.1)).
<ABC == <ACB => AC == AB.
P = 34 =>
P = 2x+12
P = 11+11+12 => AC == AB = 11.
Вывод: AB = 11.
2.
<ABC = 50° => <CBD = 180-50 = 130°
BC == BD => <BCD == <BDC (рис.2)
Так как углы равны, то каждый из них равен:
<BCD = (180-130)/2 = 25° => <BCD == <BDC = 25°
<ACB = 60°; <BCD = 25° => <ACD = 25+60 = 85°.
Вывод: <ACD = 85°.
5.
Чтобы сравнить стороны треугольника, надо сравнить углы, противоположные этим сторонам: <B = 70°; <C = 60° => <A = 180-(70+60) = 50°.
Самый маленький угол — <A. Ему противолежащая сторона — BC, которая самая маленькая, тоесть: BC < AB < AC (рис. 3).
Средний угол — <C = 60° ему противолежащая сторона — AB, тоесть: AB > BC < AC
Самый большой угол — <B = 70°, ему противолежащая сторона — AC, тоесть: AC > AB > BC.
6.
<B = 27° => <A = 90-27 = 63°
CK — биссектриса => <KCB == <ACK = 90/2 = 45°
<ADC = 90°; <A = 63° => <ACD = 90-63 = 27°
<ACD = 27° => <DCK = <ACK - <ACD = 45-27 = 18°
Вывод: <DCK = 18°.
УголА=90°
Объяснение:
в прямоугольном треугольнике сумма острых углов составляет 90°, поэтому второй острый угол равен 90–45=45°. Следовательно этот треугольник равнобедренный поскольку острые углы в нём равны и каждый составляет 45°, поэтому и катеты этого треугольника равны. Теперь выясним какой именно угол равен 90°. Так как катеты равны, то самая большая сторона - это гипотенуза.
ВС=8√6см. √6≈2,4, тогда ВС=8×2,4=19,2см, (ВС=19,2см > АВ=13см), значит ВС - гипотенуза, лежащая напротив прямого угла А, при этом АВ=АС - (катеты), уголВ=уголС=45°
Поделитесь своими знаниями, ответьте на вопрос:
Чему равен периметр равностороннего треугольника, средняя линия которого равна 6 см? ! 25 !