Задача 9
Дано:
угол DAE = 37°
DA - биссектриса угла CAE
Найти : угол BAC
Решение
Так как DA - биссектриса угла CAE, то она делит угол пополам ⇒
угол CAD = углу DAE = 37°
Отсюда, угол BAC = 180 - (CAD + DAE) = 180 - (37 + 37) = 106°
ответ: угол BAC = 106°
Задача 10
Дано:
угол BOA = 108°
CO - биссектриса угла BOD
Найти : угол BOC
Решение
CO - биссектриса угла BOD, делит угол пополам, следовательно
угол BOC = углу COD, тогда
180 - 108 = 72° - сумма углов BOC и COD
72 : 2 = 36 ° = BOC = COD
ответ: угол BOC = углу COD = 36°
Если ответ был полезным поставь
Объяснение:
Дано: ABCD-равнобедренная трапеция.
ВЕ и СF-высоты.
(а) Рассмотрим ΔАВЕ и ΔDCF.
∠А=∠Д и АВ=СД т. к. трапеция равнобедренная, ∠АЕВ=∠DFC=90°, а ∠А=∠Д поэтому ∠АВЕ=∠FCD ⇒ ΔАВЕ=ΔDCF.
(б) ∠А=∠Д, ∠Е=∠F, ∠В=∠С.
(с) Вид может быть разным, смотря как ВЫ начертите трапецию. Если у вас трапеция будет длиноватая, то это прямоугольник, если же получится так, что ЕВ=ВС=FC=EF, это квадрат.
(д) У нас ∠АВЕ=∠FCD, ВЕ и СF-высоты⇒∠В=∠Е=∠С=∠F=90°, т. е. ∠В=∠С, поэтому ∠АВС=∠ДСВ.
(е) У равнобокой трапеции есть свойство, это свойство и будет ВЫВОДОМ.
Вывод:
Углы при каждом основании равнобедренной трапеции равны.
Поделитесь своими знаниями, ответьте на вопрос:
Ca=10 см, cb=24 см, ab=26 см (дробь не сокращай)
a) sin(a) = cb/ab = 24/26
b) s(abc) = ac*cb/2 = 120 cm^2