Найдите площадь полной поверхности прямой призмы, в основании которой лежит ромб со стороной a=8 см и острым углом 60°, если большая диагональ призмы наклонена к плоскости ее основания под углом 30°.
Дано : ABCDA₁B₁C₁D₁ прямая призма ( AA₁ ⊥ пл.ABCD )
AB=BC=CD=DA = a = 8 см ( ABCD - ромб)
∠BAD = 60°
∠B₁CA = 30 ° - - - - - - -
Sполн пов - ?
Sполн пов= 2Sосн + Sбок = 2*a*a*sin60° +4a*h || h =AA₁ ||
Sполн пов= a²√3 + 4a*h
Из ΔA₁AC : AA₁ =AC*tg(∠B₁CA) =AC*tg30° = AC/√3 =a√3 /√3 = a
Δ ABD - равносторонний (∠BAD = 60°) ⇒ AO =a√3 /2 ; AC=2AO =a√3
Sполн пов= a²√3 + 4a² =a²(4+√3) =8²(4+√3) см²= 64(4 +√3) см²
ответ: 64(4 +√3) см² || (256+64√3) см² ||
подробности см приложение
Два угла треугольника равны 40° и 52°. Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов.
- - -
Дано :ΔАВС.
∠А = 40°.
∠В = 52°.
ВН₁ и АН₂ - высоты.
Точка О - ортоцентр (точка пересечения высот).
Найти :∠АОВ = ? (или ∠Н₁ОН₂, не важно, так как они равны как вертикальные).
Решение :Немного о расположении ортоцентра О :
Для начала найдём ∠С.
По теореме о сумме углов треугольника -
∠А + ∠В + ∠С = 180°
∠С = 180° - ∠А - ∠В
∠С = 180° - 40° - 52°
∠С = 88°.
Так как все углы ΔАВС - острые, то ортоцентр О лежит внутри ΔАВС.
- - -
Рассмотрим ΔСВН₁ - прямоугольный (так как ∠ВН₁С = 90° по определению высоты треугольника).
Сумма острых углов прямоугольного треугольника равна 90°.Тогда -
∠Н₁СВ + ∠Н₁ВС = 90°
∠Н₁ВС = 90° - ∠Н₁СВ
∠Н₁ВС = 90° - ∠Н₁СВ
∠Н₁ВС = 90° - 88°
∠Н₁ВС = 2°.
Теперь рассмотрим ΔОВН₂ - прямоугольный (так как ∠ОН₂В = 90°).
По выше сказанному -
∠ВОН₂ + ∠ОВН₂ = 90°
∠ВОН₂ = 90° - ∠ОВН₂
∠ВОН₂ = 90° - 2°
∠ВОН₂ = 88°.
- - -
∠ВОН₂ и ∠АОВ - смежные.
Сумма смежных углов равна 180°.Следовательно -
∠ВОН₂ + ∠АОВ = 180°
∠АОВ = 180° - ∠ВОН₂
∠АОВ = 180° - 88°
∠АОВ = 92°.
ответ :92°.
Поделитесь своими знаниями, ответьте на вопрос:
При пересечении двух параллельных прямых секущей величина одного из образованных внутренних односторонних углов на 50 градусов больше другого. найдите величину меньшего угла.
Узнаем, что было бы, если бы они были равны:180÷2=90
90+50=140-больший угол
90-50=40-меньший