lshimina65
?>

Один острый угол прямоугольного треугольника на 40∘ больше другого. найдите больший острый угол. ответ дайте в градусах

Геометрия

Ответы

madjk
ЕСЛИ Х- один из углов, то другой х+40
х+х+40+90=180
2х=50
х=25
Больший угол 25+40=65
rgmarket

1. В прямоугольнике диагонали образуют треугольники, у которых углы при основании равны.


2. Угол BOC=AOD (как вертикальные); рассмотрим треугольник BOC: угол OBC=OCB, ВС=5 см. Т.к. в треугольнике сумма углов равна 180 градусам, то 180-60=120 гр, а 120:2=60 гр. Значит, OBC=OCB=60 гр., а треугольник BOC - равносторонний.


3. Треугольники BOC и AOD равны, т.к. угол BOC=AOD (как вертикальные), DAO=OCB=ADO=OBC (как внутренне накрест лежащие). BC=AD=BO=OC=AO=DO=5 см.


Значит, диагональ AC=DB (т.к. точка О середина пересечения диагоналей) = 10 см


ответ: AC=DB=10 cм

osipov1984osipov
Угол между высотами параллелограмма, проведенными из вершины острого угла, равен тупому углу параллелограмма.

Дано: ABCD — параллелограмм,

∠BCD — острый,

CK и CF — высоты параллелограмма.

Доказать:

∠KCF=∠ABC

Доказательство:

1) ∠ABC+∠KBC=180º (как смежные).

Следовательно, ∠KBC=180º-∠ABC.

2) Так как CF — высота параллелограмма ABCD, то она перпендикулярна к прямым, содержащим стороны AD и BC. Поэтому ∠BCF=90º.

3) Рассмотрим треугольник KBC — прямоугольный (∠KBC=90º, так как CK- высота параллелограмма ABCD).

Так как сумма острых углов прямоугольного треугольника равна 90º, то

∠KCB=90º-∠KBC=90º-(180º-∠ABC)=90º-180º+∠ABC=∠ABC-90º.

4) ∠KCF=∠KCB+∠BCF=∠ABC-90º+90º=∠ABC.

Что и требовалось доказать.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Один острый угол прямоугольного треугольника на 40∘ больше другого. найдите больший острый угол. ответ дайте в градусах
Ваше имя (никнейм)*
Email*
Комментарий*