gbnn90
?>

Периметр равнобедренного треугольника равен 2, 4 дм, а боковая сторона - 9 см. найдите основание

Геометрия

Ответы

dailyan539
) треугольника равна 9 см, то и другая сторона будет 9 см
следовательно
24-(9+9)=6
zorinka777
 . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т. е. 720o, поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: ( – очевидно.  . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис. 1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние, т. е. является центром описанной около этого треугольника окружности радиуса .

(8) (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис. 1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1, то точка O одинаково удалена от всех граней (на расстояние ), а т. к. все грани – остроугольные треугольники, то O – центр вписанной сферы.

( . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то BAC = BDC, поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис. 2). Аналогично для всех пар смежных граней. Таким образом,

BDC + CDA + ADB = BAC+ CBA + ACB = 180o.
milkamilka1998

(5)  (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6)  (5) – очевидно. (4)  (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние  , т.е. является центром описанной около этого треугольника окружности радиуса  . 

(8)  (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние  ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы. 

(8)  (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то  BAC =  BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом, 

 BDC +  CDA +  ADB =  BAC+ CBA + ACB = 180o.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметр равнобедренного треугольника равен 2, 4 дм, а боковая сторона - 9 см. найдите основание
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Городничий_Коновалова384
gaydukov5706
borzhemskaya19823110
SitnikovYurii5
Richbro7
dima-a
PoleshchukTatyana
buleckovd8724
abadaeva
Александрович_Викторовна
o-pavlova-8635
Okunev1034
aananasAnastiya1270
v-shevlyakov7992
Shishkinaanasta1997