Сделаем рисунок и обозначим вершины пирамиды АВСА1В1С1. Ребро ВВ1⊥АВС=1 см
Площадь боковой поверхности этой пирамиды - сумма площадей трех трапеций: двух прямоугольных и одной равнобедренной - той, что противолежит ребру ВВ1.
В основаниях пирамиды правильные треугольники - следовательно, длины средней линии всех трапеций равны 0,5•(3+5)=4 см
Площадь прямоугольных граней равна произведению их средней линии на длину высоты пирамиды, т.е. .
S (АВВ1А1)=S (ВВ1С1С)= 4•1=4 см²
Чтобы найти высоту грани АА1С1С, проведем в основаниях пирамиды высоты ВН и В1К и соединим К и Н.
Плоскость прямоугольной трапеции ВНКВ1 перпендикулярна плоскости оснований, т.к. содержит в себе отрезок ВВ1, перпендикулярный обоим основаниям.
Из К опустим высоту КТ.
КН по теореме о трех перпендикулярах перпендикулярна АС и является высотой трапеции АСС1А1.
В прямоугольном треугольнике КТН катет КТ=ВВ1=1см, катет НТ равен разности высот оснований пирамиды.
ВК=(3√3):2
BH=(5√3):2
ТН=2√3):2=√3 см
КН=√(КТ²+НТ²)=√4=2 см
S (АСС1А1)=4*2=8 см²
S(бок)=4+4+8=16 см²
Рассмотрим множество треугольников, у которых две вершины расположены на диагонали маленького квадрата (на исходном рисунке в условии), а третья лежит на прямой, содержащей диагональ большого квадрата (см. мой рисунок). Заметим, что площади треугольников, входящих в это множество, попарно равны. Действительно, у всех треугольников общая сторона — диагональ малого квадрата, высоты, падающие на эту диагональ тоже равны, поскольку a ║ b.
Значит, площадь серого треугольника равна площади треугольника, указанного на моем рисунке. Площадь среднего квадрата равна 80. Теперь осталось следить за руками: (80+20+20)-40-10-60/2=70-30=40. Площадь равна 40.
Поделитесь своими знаниями, ответьте на вопрос:
Сторона треугольника равна 5 см, а высота, проведенная к ней, в 2 раза больше стороны. найдите площадь треугольника.
Площадь треугольника = (высота*сторону)/2= (5*10)/2= 25
ответ; 25 см