Р =18 + 18 + 15,9 + 15,9 = 67,8 см
Объяснение:
Отрезки ОА и ОС - радиусы, проведённые из центра окружности к касательным ВА и ВС соответственно. ОА = ОС, как радиусы и равны 18 см из условия.
Радиусы, проведённые касательным окружности в точках касания А и С образуют углы 90°. Поэтому треугольники ΔОСВ и ΔОАВ - прямоугольные, углы АОВ и СОВ при точке O равны.
Поскольку треугольники ΔОСВ и ΔОАВ - прямоугольные, то неизвестная сторона при известных двух других может быть найдена по теореме Пифагора: c²=a²+b².
1) Найдём неизвестную сторону АВ треугольника ОАВ. Стороны ОА=18см - катет (а), ВО=24см - гипотенуза (с).
ВО² = ОА² + АВ², отсюда АВ² = ВО² - ОА²
АВ² = 24² - 18²
АВ² = 576 - 324 = 252 см²
АВ = √252= 15,9 см
2) Если у двух треугольников ΔОСВ и ΔОАВ равны:
стороны ОА = ОС - как радиусы, сторона ВО как общая, углы ∠АОВ = ∠СОВ, то треугольники равны по первому признаку равенства треугольников. А значит ВС=АВ=15,9 см.
3) Периметр четырехугольника АВСО равен:
АВ+ВС+ОС+ОА ,
Р =18 + 18 + 15,9 + 15,9 = 67,8 см
2) ∠BAK = ∠KAC = ∠OCA = ∠OCK, т.к. ∠A = ∠C, и СО и КА — биссектриссы.
В ΔAKB и ΔСОВ: АВ = ВС (т.к. ΔАВС — равнобедренный) ∠BAK = ∠BCO (т.к. АК и СО — биссектриссы равных углов). ∠B — общий. Таким образом, ΔAKB = ΔСОВ по 2-му признаку равенства треугольников.
Откуда AK = СО, что и требовалось доказать.
1) AQ = QB = BF = FC, т.к. AF и CQ — медианы. В ΔAFB и ΔCQB:
АВ = ВС (т.к. ΔАВС — равнобедренный)
QB = BF
∠В — общий. Таким образом, ΔAFB = ΔCQB по 1-му признаку равенства треугольников.
Откуда AF = CQ.
блин хз как рисунок скинуть, я с ноута зашла
Поделитесь своими знаниями, ответьте на вопрос:
Втетраэдре abcd отрезки, соединяющие его вершины с центрами вписанных окружностей противоположных граней, пересекаются в одной точке. известно, что ab=8, bc=5, cd=7. найдите da.
Пусть точка пересечения упомянутых в условии отрезков - это точка M.
Предположим, что я построил плоскость ACM.
Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD.
Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB.
Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD.
Что означает, в частности, что AD/AB = CD/CB;
AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)