Обозначим для удобства доли отношений: OA=7y OA1=y BO=OB1=x Из подобия прямоугольных треугольников по острому углу AOB1 и A1OB Получим y/x=x/7y x^2=7y^2 x=√7y Площадь треугольника можно найти SABC=1/2*2x*4=1/2*8y*BC 8x=8y*BC x=y*BC √7y=y*BC BC=√7 Рассмотрим прямоугольный треугольник треугольник AB1O sin OAB1=x/7y=√7y/7y=1/√7 Откуда тк C=90-OAB1 то cosC=cos(90-OAB1)=sinOAB1=1/√7 Теперь по теореме косинусов найдем 3 сторону: AB^2=16+7-2*4*√7*1/√7=16+7-8=15 AB=√15 Рассмотрим прямоугольные треугольники CAA1 и CBB1 Из них получим: СB1=CB*cosС=√7*1/√7=1 CA1=AC*cosC=4/√7 И наконец 2 раз применим теорему косинусов:
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Подобны ли треугольники если стороны одного из них равны 4.5, 10.4, 7.2, а другого 18, 12, 26 дайте развёрнутый ответ