Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
Відповідь:
(-2,5; 7.5) (0; 10) (3.5; 9.5) (1; 7)
Пояснення:
Так как угловой коефициент двух сторон x-y+6=0 и
x-y+10=0 одинаковий, то ето паралельние сторони,
Найдем точки пересечение сторон и диагонали
x-y+6=0
3x+y-10=0. → 4х-4=0→ х=1; у=7 → (1;7) одна из вершин ромба
x-y+10=0
3x+y-10=0 → 4х=0 →х=0 у=10 → (0;10) противоположная вершина
Пусть О-точка пересечения диагоналей, середина диагонали (1+0):2=0.5; (7+10):2=8.5.
О(0.5; 8.5)
Построим уравнение второй диагонали, которая проходит через точку О и перпендикулярна первой 3x+y-10=0. у=10-3х
Ее угловой коефициент равен 1/3
у-8.5=1/3( х-0.5)
3у-25.5=х-0.5
3у-х-25=0 уравнение второй диагонали
Найдем пересечения сторон со второй диагональю
x-y+6=0.
3у-х-25=0. → 2у-19=0 → у=9.5 х=3.5→(3.5; 9.5)
x-y+10=0
3у-х-25=0 → 2у-15=0 → у=7.5; х=-2.5. → (-2,5; 7.5)
(-2,5; 7.5) (0; 10) (3.5; 9.5) (1; 7)
Поделитесь своими знаниями, ответьте на вопрос:
Точки t и p лежат соотвественно на сторонах ad и cd квадрата abcd так, что угол abt= углу tbp = углу pbc. известно что at=2 см. вычислите площадь треугольника bpt
ответ: 4