luksorsps20096124
?>

1. limx→5(4−x2)=2. limx→−1x√2+3+8/x−4=3. limx→6x−6/x2−16=

Геометрия

Ответы

delfa-r6289

Объяснение:

Как я понял, нам нужно найти длину окружности, вписанной в четырёхугольник BMDN. Я её изобразил на рисунке, хотя этого можно было и не делать. Обозначим длину этой окружности буквой l. Её нам нужно найти.

И давайте сразу из периметра найдём сторону ромба, она нам пригодится в решении. Обозначим для удобства сторону ромба буквой а. а=30/4=7,5.

Во-первых, проведём диагональ BD, которая разделяет угол В на два равных угла. Тогда ∠DBC = arctg2. Давайте теперь найдём косинус этого угла.

DBC = arctg2 = tgDBC=2\\tgDBC = \frac{sinDBC}{cosDBC}=\frac{\sqrt{1-cos^2DBC} }{cosDBC} \\2=\frac{\sqrt{1-cos^2DBC} }{cosDBC}\\2cosDBC=\sqrt{1-cos^2DBC} \\4cos^2DBC=1-cos^2DBC\\5cos^2DBC=1=cos^2DBC=\frac{1}{5}=cosDBC=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}

Тут может возникнуть вопрос по поводу знака косинуса. Да, косинус может быть отрицательным, но взгляните на наш ромб: угол, косинус которого мы искали, является острым. А если мы посмотрим на единичную окружность, то отрицательные косинусы могут быть лишь у углов 2 и 3 четвертей, т.е. это уже не острые углы. Значит мы берём именно такое положительное значение косинуса.

Треугольник BCD является равнобедренным, поэтому воспользуемся формулой для нахождения основания равнобедренного треугольника.

BD=2a*cosDBC=\frac{15\sqrt{5} }{5} =3\sqrt{5}

Вообще я сейчас пытаюсь найти высоту ромба, и чтобы её найти

нам ещё нужно найти синус угла В. Давайте найдём его:

B=2arctg2 = tgB=tg2DBC=\frac{2tgDBC}{1-tg^2DBC}=\frac{2*2}{1-4}=-\frac{4}{3} \\tgB=\frac{sinB}{cosB}=\frac{sinB}{\sqrt{1-sin^2B} }\\-\frac{4}{3}=\frac{sinB}{\sqrt{1-sin^2B}}\\\frac{16}{9}=\frac{sin^2B}{1-sin^2B} \\16-16sin^2B=9sin^2B\\25sin^2B=16\\sin^2B=\frac{16}{25}=sinB=\frac{4}{5}

Теперь находим высоту ромба через синус тупого угла и меньшую диагональ:

BM=a*sinB=7,5*\frac{4}{5}=6

Из прямоугольного треугольника BMD найдём катет MD по теореме Пифагора:

MD=\sqrt{BD^2-BM^2}=\sqrt{45-36}=\sqrt{9}=3

Давайте взглянем на треугольники BMD и NBD. Докажем их равенство. Эти треугольники будут равны, т.к. высоты ромба, проведённые из тупого угла равны, BD - общая для обоих треугольников, а диагональ ромба разделяет угол MBN пополам. Проще говоря, они равны по двум сторонам и углу между ними. Зачем нам это нужно? Это нужно для того, чтобы найти площадь и периметр четырёхугольника, в который вписана окружность. То есть, мы найдём площадь одного треугольника, умножим её на два, и получим площадь данного четырёхугольника. Также поступим и с периметром: найдём сумму катетов и умножим её на 2. Вообще для нахождения радиуса окружности нам нужен полупериметр, поэтому я периметр ещё поделю на 2. Ищем площадь и полупериметр четырёхугольника:

S_{BMD}=\frac{BM*MD}{2}=\frac{6*3}{2}=9\\S_{BMDN}=9*2=18\\P_{BMDN}=2(BM+MD)=2*9=18 = p_{BMDN}=\frac{18}{2} =9

Теперь найдём радиус вписанной окружности по формуле:

r=\frac{S_{BMDN}}{p_{BMDN}}=\frac{18}{9} =2

И теперь находиv длину окружности по формуле:

l=2\pi r=2*2*\pi =4\pi


решить: в ромбе ABCD периметр составляет 30 см., а тупой угол при вершине B равен 2arctg2. Из вершин
fullhouse9991

Угол треугольника равен п / 3, противоположная ему сторона √7 см, отношение длин двух других сторон а: b = 3 . Найти большую сторону треугольника.

Решение .

Т.к.  а: b = 3 , то а=3b ⇒ большая сторона а.

Рассмотрим  треугольник со сторонами в, 3в, √7 и углом 60°против стороны √7 .

По т. косинусов  "Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними"  , имеем

√7²=b²+(3b)²-2*b*3b*cos60,

7=b²+9b²-2*b*3b*1/2,

7=10b²-3b²  или 7b²=7 ⇒ b=1 . Тогда наибольшая сторона а=3b=3*1=3(cм) .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. limx→5(4−x2)=2. limx→−1x√2+3+8/x−4=3. limx→6x−6/x2−16=
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

yyyaga
Anna-Miron
autofilters27
punchf
Узлиян Фурсов1488
agrilandrussia
alexkortyukov
belka1976
yamalsva45
yanva
Galiaahmatova4447
Хабарьева Андрей1056
нужно само решение ответы 6 и 12
pechyclava
Galkin Vladimirovich729
avdeevo