Ferrigen
?>

Abcd- трапеция с основанием ab и cd, доказать что aob подобен треугольнику cod.

Геометрия

Ответы

Olesyamilenina8
Рассмотрим трапецию ABCD. Треугольник AOB подобен треугольнику COD по двум углам:
1. ∠DCA=∠CAB, как накрест лежащие углы при параллельных прямых AB и CD (AB║CD как основания трапеции) и секущей AC.
2. ∠COD=∠AOB, как вертикальные углы

Abcd- трапеция с основанием ab и cd, доказать что aob подобен треугольнику cod.
nst-33764

Дано: ΔABE - равнобедренный, АВ=ВЕ= 17 см, АЕ= 16 см, АЕВ∈α, CB⟂α, C∉α, СВ= 8 см.

Найти: расстояние от точки C до стороны треугольника AE

Решение.

1) Проведём высоту ВН в равнобедренном треугольнике АВЕ => BH⟂AE

Так как BH⟂AE и по условию ВС⟂α, по теореме о трёх перпендикулярах следует, что наклонная СН⟂АЕ. Наклонная СН и есть расстоянием от точки С до стороны АЕ ΔABE.

2) В треугольнике ЕСВ (∠ЕВС=90°, т.к. СВ⟂α) по т.Пифагора находим гипотенузу ЕС:

ЕС²= ЕВ²+ВС²;

ЕС²= 17²+8²;

ЕС²= 289+64;

ЕС²= 353

3) Поскольку ΔABE - равнобедренный, а ВН - высота, проведённая к основанию АС, то ВН также является и медианой ΔАВЕ => АН=НЕ= ½АЕ= 16 : 2 = 8 см.

4) В ΔCHE (∠CHE=90°) по т.Пифагора находим СН:

СН²= ЕС² – НЕ²;

СН²= 353–8²;

СН²= 353–64;

СН²= 289;

СН= 17 см (–17 быть не может)

Расстояние от точки C до стороны треугольника AE равно 17 см.

ответ: 17 см.


Равнобедренный треугольник ABE находится в плоскости α. Боковые стороны треугольника ABE равны по 17
oskar-pn

S_{GHK}= \dfrac{3}{7}

Объяснение:

Прямоугольник АВСD

S_{ABCD} = 10

BE = EF = FC

AG = GD

-------------------------

S_{GHK}- ?

-------------------------

Пусть длинные стороны прямоугольника равны а, а короткие - b.

ВС = AD = a

FD = СВ = b

Тогда площадь прямоугольника

S_{ABCD} = a\cdot b = 10

ΔBEH ~ ΔDGH по двум углам (∠BEH = ∠DHG  - вертикальные углы; ∠HBE = ∠HDG -внутренние накрест лежащие углы при ВС║AD и секущей BD)    

Из подобия этих треугольников следует пропорциональность сторон BE = a/3 и DG = a/2, откуда , что коэффициент подобия

k = a/3 : a/2 = 2/3

Высоты этих треугольников также относятся как 2:3, и высота ΔDGH равна 3b/5. Площадь ΔDGH равна

S_{DGH} = \dfrac{1}{2} \cdot \dfrac{a}{2}\cdot \dfrac{3b}{5} = \dfrac{3}{20}ab = \dfrac{3}{2} .

ΔBFK ~ ΔDGK по двум углам (∠BKFH = ∠DKG  - вертикальные углы; ∠KBF = ∠KDG -внутренние накрест лежащие углы при ВС║AD и секущей BD) .    

Из подобия этих треугольников следует пропорциональность сторон BF = 2a/3 и DG = a/2, откуда  коэффициент подобия

k = 2/3 : a/2 = 4/3

Высоты этих треугольников также относятся как 4:3, и высота ΔDGK равна 3b/7. Площадь ΔDGK равна

S_{DGK} = \dfrac{1}{2} \cdot \dfrac{a}{2}\cdot \dfrac{3b}{7} = \dfrac{3}{28}ab = \dfrac{15}{14} .

Площадь ΔGHK

S_{GHK}= S_{DGH}-S_{DGK}= \dfrac{3}{2} -\dfrac{15}{14} = \dfrac{3}{7}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Abcd- трапеция с основанием ab и cd, доказать что aob подобен треугольнику cod.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Romanovich1658
komplekt7
andreykrutenko
Olifirenko119
Serezhkin
seymurxalafov05
Попов1946
snow8646
de1979nis
Рожков Зейдан460
Бунеева
zsa100
галина
nurtilekisakov
autofilters27