66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²
8цел16/37 см самая маленькая высота
Объяснение:
Дано
Треугольник
а=26см сторона треугольника
б=15 см сторона треугольника
с=37 см сторона треугольника
h(37)=?
Решение
Найдем площадь по формуле Герона.
S=√(р(р-а)(р-б)(р-с)), где р- полупериметр
р=(а+б+с)/2
р=(26+15+37)/2=78/2=39 см полупериметр.
S=√(39(39-26)(39-15)(39-37)=√(39*13*24*2)=
=√24336=156 см² площадь треугольника.
Другая формула нахождения площади.
S=1/2*c*h., где с - основание на которую опущена высота. h- высота.
h=2S/c
h(37)=2*156/37=312/37=8цел16/37 см высота
Поделитесь своими знаниями, ответьте на вопрос:
Если осевое сечение конуса - правильный треугольник со стороной 2r, то площадь сечения, проведенного через две образующие, угол между которыми 30 °, равна: а) r2 ; б) r2 ; в) r2; г) 2r2.