X=2+k(y-9) - уравнение прямой, проходящей через данную точку; подставим в уравнение параболы:
y^2=72+36ky-324k;
y^2-36ky+(324k-72)=0.
Мы ищем момент, когда такая прямая коснется параболы, что означает, что две точки пересечения совпадут, а это в свою очередь означает обращение в ноль дискриминанта этого уравнения:
D/4=324k^2-324k+72=0; 18k=t;
t^2-18t+72=0; (t-6)(t-12)=0; t=6 или t=12; k=1/3 или k=2/3. Осталось подставить найденные k в уравнения:
x =2+(1/3)(y-9); 3x=6+y-9; 3x-y+3=0 и
x =2+(2/3)(y-9); 3x=6+2y-18; 3x-2y+12=0
ответ: 3x-y+3=0; 3x-2y+12=0
fafina12586
02.10.2022
Y²=36x y=6√x проверим не является ли точка точкой касания 6√2≠9 Пусть х0-точка касания.Точка А(2;9) принадлежит касательной.Подставим ее координаты в уравнение касательной y=f(x0)+f`(x0)(x-x0) 6√x0+3/√x0*(2-x0)=9 6x0+3(2-x0)=9√x0,x0≠0 6x0+6-3x0-9√x0=0 3x0-9√x0+6=0 x0-3√x0+2=0 √x0=a a²-3a+2=0 a1+a2=3 U a1*a2=2 a1=1⇒√x0=1⇒x0=1 a2=2⇒√x0=2⇒x0=4 Через данную точку проходит 2 касательных y1=6+3(x-1)=6+3x-3=3+3x y2=12+1,5(x-4)=12+1,5x-6=6+1,5x
Apresov
02.10.2022
1) теорема о свойствах равнобедренного треугольника. в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, . доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника. как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с. следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника
Nasteona1994
02.10.2022
1. средние линии треугольника находятся втом же отношении, что и стороны треугольника. обозначим стороны треугольника буквами а, в и с. тогда а: в: с=2: 3: 4, т.е. а=2х, в=3х, с=4х по условию, периметр р=45см, т.е. а+в+с=45 2х+3х+4х=45 9х=45 х=45: 9 х=5(см) а=2х=2*5=10(см) в=3х=3*5=15(см) с=4х=4*5=20(см) ответ: 10 см, 15 см, 20 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Составить уравнения касательных к графику кривой у²=36х, отведенных из точки а(2, 9
y^2=72+36ky-324k;
y^2-36ky+(324k-72)=0.
Мы ищем момент, когда такая прямая коснется параболы, что означает, что две точки пересечения совпадут, а это в свою очередь означает обращение в ноль дискриминанта этого уравнения:
D/4=324k^2-324k+72=0; 18k=t;
t^2-18t+72=0;
(t-6)(t-12)=0; t=6 или t=12; k=1/3 или k=2/3.
Осталось подставить найденные k в уравнения:
x =2+(1/3)(y-9); 3x=6+y-9; 3x-y+3=0 и
x =2+(2/3)(y-9); 3x=6+2y-18; 3x-2y+12=0
ответ: 3x-y+3=0; 3x-2y+12=0