Джамал1009
?>

Решить дано: треугольник авс; ав=вс=ас; ас принадлежит альфе вд перпендикулярна альфе угол вад=45° найти: угол авс

Геометрия

Ответы

melnik-738
P-a-ss-nmc-p_-xcv32323125464
Korneeva1856

1) Формула объёма конуса V=S•H:3=πr²H:3

Формула объёма шара

V=4πR³:3

Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°. 

Выразим радиус r конуса через радиус R шара.

r=2R:tg60°=2R/√3

V(кон)=π(2R/√3)²•2R²3=π8R³/9

V(шара)=4πR³/3

V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3

———————

2) Формула объёма цилиндра 

V=πr²•H

Формула площади осевого сечения цилиндра

S=2r•H

Разделим одну формулу на другую:

(πr²•H):(2r•H)=πr/2⇒

96π:48=πr/2⇒

4π=πr

r=4

Из площади осевого сечения цилиндра:

Н=S:2r=48:8=6

На схематическом рисунке сферы с вписанным цилиндром 

АВ- высота цилиндра, ВС - его диаметр, 

АС - диаметр сферы. 

АС=√(6²+8²)=√100=10

R=10:2=5 

S(сф)=4πR8=4π•25=100π см²


1. диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол 60 г
Kolosove5465
Что-то не так. Во-первых, опечатка - не призма, а пирамида.
Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды.
Значит, считаем, что это 4-угольная правильная пирамида.
В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней).
Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным.
Нижние вершины куба лежат на средних линиях основания KM и LN.
Справа я нарисовал сечение пирамиды плоскостью SLN.
В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба,
а основание PR = P1R1 = x√2 - диагонали грани куба.
Теперь решаем задачу.
Сторона основания пирамиды а, диагональ AC = BD = a√2,
OC = a√2/2, угол наклона бокового ребра α.
В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α.
В треугольнике LOS катет OL = a/2, по теореме Пифагора
SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α)
SL = a/2*√(1 + 2tg α)
Угол наклона апофемы к плоскости основания OLS = β:
tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α
В треугольнике RR1L катет
RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α)
Но мы знаем, что PR = x√2 и NP = RL. Получаем
NL = NP + PR + RL
a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
x = \frac{a}{ \sqrt{2}/tg \alpha + \sqrt{2} } = \frac{a*tg \alpha }{ \sqrt{2}*(tg \alpha +1) }

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить дано: треугольник авс; ав=вс=ас; ас принадлежит альфе вд перпендикулярна альфе угол вад=45° найти: угол авс
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Аврамец1911
zaalmix
Sknyajina5
endyurans2ooo
tarasovs
vsnimschikov391
ss2911
vitalis79
adrinalin991
hacker-xx1
missmorozova2
vladusha47713
Elenabolt77
osnickyi
Maksimova1320