пусть
длина медаины АА1=а
длина медины СС1=с
точка персечения О делит медианы на отрезки -свойство медиан
СО=2/3*с
ОС1=1/3*с
АО=2/3*а
ОА1=1/3*а
треугольники АОС1 и СОА1 - прямоугольные ,
т к медианы треугольника АА1 и СС1 пресекаются под углом 90 градусов
тогда по теореме Пифагора
СО^2 +OA1^2 =CA1^2 подставим сюда а , c CA1=16/2
(2/3*с)^2 +(1/3*а)^2= (16/2)^2 (1)
ОC1^2 +OA^2 =AC1^2 подставим сюда а , c AC1=12/2
(1/3*с)^2 +(2/3*а)^2= (12/2)^2 (2)
решим систему двух уравнений (1) и (2)
здесь а =4√3 с=2√33
теперь найдем сторону АС
по теореме Пифагора
АС^2= (2/3*c)^2 +(2/3*a)^2=(2/3)^2*(c^2+a*2)=(2/3)^2*((2√33)^2+(4√3)^2)=80
AC=√80 =4√5
ответ AC=4√5
АС - більша діагональ, ВД - менша.
АС - ВД = 10см
Нехай ВД = х см, АС = 10 + х см
Діагоналі перетинаються під прямим кутом і діляться навпіл.
СО = ОА = (10 + х) / 2
ВО = ОД = х/2
Розглянемо трикутника ВСО:
він прямокутний кут О = 90градусів
Застосуємо теорему Піфагора:
ВС² = ВО² + СО²
25² = ((10 + х)/2)² + (х/2)²
625 = (100 + 20х + х²)/4 + х²/4
625 = (100 + 20х + 2х²) / 4
625 = (2 * (х² + 10х + 50)) / 4
625 = (х² + 10х + 50) / 2
1250 = х² + 10х + 50
х² + 10х - 1200 =0
шукай по дискрімінанту
Д = 70²
х1 = 30, х2 = -40
х2 = -40 -незадовільняє умову (довжина не може бути відємною)
Отже ВД = 30 см, АС = 30 + 10 = 40 см
S = 1/2 * АС * ВД = 1/2 * 30 * 40 = 600 см²
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном треугольнике катеты равны 20 и 21 см найдите периметр треугольник
ответ: 70 см
Объяснение:
а = 20 см
b = 21 см
Р = ?
По теореме Пифагора найдем гипотенузу:
c² = a² + b²
c² = 20² + 21² = 400 + 441 = 841
c = √841 = 29 см
Р = a + b + c
P = 20 + 21 + 29 = 70 см