romolga3580
?>

Медианы bf и ae треугольника авс пересекаются в точке о. век. ав (век) =а, fc(век) =в. выразите 1)bf, 2)bc, 3)ce через а и b

Геометрия

Ответы

lenalevmax7937
Прикрепляю........................................
Медианы bf и ae треугольника авс пересекаются в точке о. век. ав (век) =а, fc(век) =в. выразите 1)bf
Любовь-Волков1205

" Основой прямой призмы является равнобедренный треугольник с углом a при основании и радиусом вписанной окружности r. Диагональ боковой грани, проходящей через основание равнобедренного треугольника, наклонена к плоскости основания под углом y . Отметьте, какие из приведенных четырех утверждений правильные

1. Плоскость, проходящая через боковое ребро призмы и уентр круга, вписанного в основание, делит двугранный угол при боковом ребре призмы пополам

2. Боковое ребро призмы равна 2r*ctg*a/2*tgy

3. Одна из сторон основания призмы равна r*ctg*a/2

4. Один из двугранных углов при боковом ребре призмы равна a"

Объяснение:

1) Т.к. центр вписанной окружности лежит в точке пересечения биссектрис, то плоскостью, проходящей через боковое ребро призмы и центр круга, вписанного в основание, будет плоскость АКК₁А₁ , где  АК, А₁К₁-биссектрисы нижнего и верхнего оснований.

Поэтому 1 утверждение верное.

2) Боковое ребро найдем из ΔАСС₁ -прямоугольного :  СС₁=АС*tgy.

АС найдем из ΔАОН  :

                    ΔАВС-равнобедренный. В равнобедренном    

                    треугольнике биссектриса ВН является высотой и    

                    медианой .АК-биссектриса, значит ∠ОАН=α/2 .

                   АН= r /(tgα/2 )  , 2АН=АС= =2r*ctg α/2  .

Получаем    СС₁=2r*ctg α/2  *tgy.      

Поэтому 2 утверждение верное.      

3) 3 утверждение неверное , т.к. в п 2 найдена сторона основания АС=2r*ctg α/2   . а боковая сторона будет искаться через косинус или синус ΔАВН.

4)4 утверждение верное . Это двугранный угол , например САА₁В, т.к

АА₁⊥АС и АА₁⊥АВ и ∠ВАС=α


Основой прямой призмы является равнобедренный треугольник с углом a при основании и радиусом вписанн
Шаленко

Площадь боковой поверхности цилиндра:

Sбок = 2πRH

По условию H = R - 2,

2πR(R - 2) = 160π

R(R - 2) = 80

R² - 2R - 80 = 0 по тоереме Виета:

R = 10     или   R = - 8 (не подходит по смыслу задачи)

Н = R - 2 = 8 см

а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:

Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²

б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).

ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.

ΔАОС: ∠АСО = 90°, по теореме Пифагора:

            АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см

АВ = 2АС = 16 см

Sсеч = AB · H = 16 · 8 = 128 см²

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Медианы bf и ae треугольника авс пересекаются в точке о. век. ав (век) =а, fc(век) =в. выразите 1)bf, 2)bc, 3)ce через а и b
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

autofilters27
ridyana504
Mariya-Karaseva
tboychenko
banketvoshod
baltgold-m27
Bni1504
aksmobile
basil69
safin8813
morozmd
baulinanatalia7201
masha812
starabanov
Гаевая1290