после построения mn получается треугольник mne, подобный треугольнику cde по первому признаку подобия (угол е - общий, углы с и nme равны как соответственные углы при пересечении двух параллельных прямых cd и mn секущей се). поскольку треугольники подобны, то
< mne = < cde = 68°
зная, что развернутый угол равен 180°, находим угол dnm:
< dnm = 180 - < mne = 180 - 68 = 112°
поскольку dm - биссектриса, то угол mdn = < cde : 2 = 68 : 2 = 34°
зная два угла треугольника dmn, находим неизвестный угол:
< dmn = 180 - < mdn - < dnm = 180 - 34 - 112 = 34°
Дано: ΔABC - прямоугольный, ∠C = 90°, ∠ABC = 60°, AC = 6 см.
Найти: а) AB; б) CD
Решение: 1) Рассмотрим ΔABC: ∠ABC = 60°, ∠C = 90°, ∠A = 30° (т. к. 180° - (90° + 60°) = 30); Найдем сторону AB через синус угла ABC (синус острого угла равен отношению противолежащего катета к гипотенузе): sin60° = =
=
; Отсюда AB =
=
см.
2) Рассмотрим ΔACD, в котором ∠D = 90°, а ∠CAD = 30° (из 1); Согласно свойству прямоугольного треугольника с углом в 30°, катет, лежащий напротив угла в 30°, равен половине гипотенузы, следовательно, CD = 1/2*AC = 1/2*6 = 3 см.
ответ: а) см; б) CD = 3 см.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике авс с основанием ас из вершин а и в проведены биссектрисы, образующие при пересечение угол 100 градусов. найдите углы треугольника