Если углы при основании равны х то угол при вершине х-63° сумма всех углов =180° значит х+х+х-63=180 3х=180+63 3х=243 х=81° углы при основании по 81°,угол привершине 81-63=18°
alesia1986
10.08.2021
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота, РА=РВ=РС=6 см
5. Находим площадь боковой поверхности пирамиды. Р = 1/2 Р₀l Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².
alexanderpokrovskij6
10.08.2021
Имеем равнобедренный треугольник АВС, АВ = ВС = 10. Медиана АМ к стороне ВС равна √153. Медиана к основанию - это высота ВД.
Медиана разбивает треугольник на 2 равновеликих по площади. Тогда S(АВС) = 2S(АВМ). Площадь треугольника АВМ находим по формуле Герона: S = √(p(p-a)(p-b)(p-c)). Полупериметр р = (10+5+√153)/2 = (15+√153)/2 ≈ 13,684658. Подставив данные, получаем S(АВМ) = 24. Тогда S(АВС) = 2*24 = 48.
Обозначим АД - половину стороны АС - за х. Высота ВД это Н = √(10² - х²) = √(100 - х²).
Тогда площадь треугольника АВС равна: S(АВС) = (1/2)*2x*H = х√(100-х²) = 48. Возведём обе части в квадрат. х²(100-х²) = 48². Заменим х² на у. Получаем квадратное уравнение: у² - 100у + 2304 = 0. Квадратное уравнение, решаем относительно y: Ищем дискриминант: D=(-100)^2-4*1*2304=10000-4*2304=10000-9216=784;Дискриминант больше 0, уравнение имеет 2 корня: y_1=(√784-(-100))/(2*1)=(28-(-100))/2=(28+100)/2=128/2=64;y_2=(-√784-(-100))/(2*1)=(-28-(-100))/2=(-28+100)/2=72/2=36.
Отсюда находим 2 значения х = 8 и х = 6. Но второй ответ не принимаем, так как медиана АМ получается равной √97.
ответ: длина медианы, проведенной к ОСНОВАНИЮ треугольника, равна √(100-64) = √36 = 6.
то угол при вершине х-63°
сумма всех углов =180°
значит х+х+х-63=180
3х=180+63
3х=243 х=81°
углы при основании по 81°,угол привершине 81-63=18°