1) Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
2) Центром является точка (принято обозначать О) пересечения серединных перпендикуляров к сторонам многоугольника.
3) Если прямоугольный треугольник вписан в окружность, значит его гипотенуза - диаметр. Следовательно по теореме Пифагора:
2R = корень из (36+64) и тогда R = 5 (см).
4) Свойство четырехугольника. Четырехугольник можно описать вокруг тогда и только тогда, когда суммы длин его противоположных сторон равны
Пусть по условию a+c=15. Тогда a+c=b+d; 15=b+d
Периметр четырехугольника: P=a+b+c+d=(a+c)+(b+d)=15+15=30 см
5) прости не смог
Объяснение:
1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6
Поделитесь своими знаниями, ответьте на вопрос:
Доведіть що у будь якому трикутнику є кут не більший за шістдесят градусів