Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².
Поделитесь своими знаниями, ответьте на вопрос:
Найдите большую диагональ параллелограмма abcd, если ad=4, угол a=60°, а высота bh треугольника abd равна √3
Рассмотрим ∆ АВН.
Угол ВАD=60°, АВ=АН/sin 60°=√3:(√3/2)=2 ⇒ АН=АВ•cos60°=2•0,5=1
Из прямоугольного ∆ ВНD по т.Пифагора ВD²=BH²+DH²=3+9=12
Найдем АС.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
ВD²+АС²=2•( AB²+AD²)
12+AC²+2•(4+16) ⇒ AC² =28 откуда AC=2√7 см
Опустим высоту СК на продолжение стороны АD.
∆ ABH=∆ CDK ( равные соответственные углы при А и D и равные катеты ВН=СК).⇒
AK=AD+DK=5⇒
АС=√(CK²+AD²)=√28=2√7 см
теорема косинусов, (угол АВD=180°-60°=120°). Вычисления приводить не буду, они дадут тот же результат.