dpolkovnikov
?>

Найдите радиус сектора если длина дуги равна 6 см и площадь 24 см2

Геометрия

Ответы

natakrechko
29
saa002
Пусть x - отношение длины дуги сектора к длине окружности, тогда:
Длина дуги - 2πr × x = 6 (1)
Площадь сектора - πr² × x = 24 (2)
Поделим обе части второго выражения на 4:
πr² × x / 4 = 6
По скольку теперь правые части обоих выражений равны 6, можем приравнять их левые части:
2πr × x = πr² × x / 4 поделим обе части на πrx:
2 = r/4
r = 8

Похоже на правду? =)
iamhrusha
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..))
   По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.

2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
                                                           ∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
                                   (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.

В ΔСАН и ΔMAD:  HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC  =>
эти треугольники равны по стороне и двум углам
Сумарокова
Проведём сечение пирамиды через рёбра BS и ES.
Плоскость этого сечения будет перпендикулярной к заданной плоскости сечения, так как диагональ АС перпендикулярна диагонали ВЕ.
В сечении получим 2 треугольника: BSE и KME.
Ребро BS как гипотенуза равно 6√2.
КМ - это линия наибольшего наклона плоскости.
Отрезок ВК на стороне ВЕ равен половине стороны шестиугольника как катет, лежащий против угла в 30 градусов.
Отношение ВК : ВЕ равно отношению SM : SE (3 / 12 = (3/√2) / (6√2), или 1/4 = 1/4.
Отсюда вывод: треугольники BSE и KME подобны. Отрезок КМ, как и BS, имеет наклон к плоскости основы под углом 45 градусов.

Сечение шестиугольной пирамиды плоскостью, проходящей через диагональ АС под углом 45 ° представляет собой пятиугольник, состоящий из трапеции и треугольника.

У трапеции нижнее основание АС равно
 AC = 2*6*cos30°  = 2*6*(√3/2) = 6√3.
Верхнее основание трапеции определяется из условия пересечения заданной плоскости с рёбрами SD и DF.
В плоскости ВSE верх трапеции - точка Н.
Высоту трапеции КН найдём из треугольника КНF₁, образованного пересечением заданной плоскости и плоскости, проходящей чрез рёбра SD и DF.
В этом треугольнике известно основание КF₁ = 3 + 3 = 6 и угол НКF₁ = 45°. Поэтому он подобен треугольнику F₁BS по двум углам.
Сторона F₁B равна 6 + 3 = 9.
Коэффициент подобия равен 6/9 = 2/3.Тогда КН = (2/3)*BS = (2/3)*6√2 = 4√2. Высота точки Н равна 4√2*sin 45° = 4√2*(√2/2+ = 4.
Верхнее основание трапеции определяется из условия подобия треугольников SH₁H₂ и SDF по высотам от вершины S, равными 2 и 6.
H₁H₂ = DF*(2/6) = 6√3*(1/3) = 2√3.

Тогда S₁ = (1/2)*((6√3)+(2√3))*4√2 = 16√2.

У треугольника ВМЕ высота точки М равна 6*(9/12) = 4,5.
Отсюда высота треугольника H₁МH₂ равна (4,5 - 4)/sin 45° = (1/2)/(√2/2) = (1/2)√2.
Тогда S₂ = (1/2)*(2√3))*((1/2)√2) = (1/2)√6.

Площадь сечения равна:
 S = S₁ + S₂ = (16√6) + (√6/2) = (33√6)/2 =   40.41658.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите радиус сектора если длина дуги равна 6 см и площадь 24 см2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sergeystepanov231
Оксана Николаевич
Попова1271
melissa-80
phiskill559
av52nazarov
morozovalexander90
mvv-155
Mukhina1811
opel81
Merkuloff78
Shlapakov1911aa
Бражинскене_Алексей
filial2450
Bogataya Vladimir318