Картузов-Алексей1252
?>

Стороны основания правильной шестиугольной пирамиды равны 18, боковые ребра равны 15. найдите площадь боковой поверхности этой пирамиды.

Геометрия

Ответы

Vika-simonenko

Дана правильная шестиугольная пирамида SABCDEF, в основании которой лежит правильный шестиугольник. Если стороны основания AB=BC=CD=DE=EF=18, то AO=BO=CO=DO=EO=FO=18. И тогда в прямоугольном треугольнике, например ΔSOD, образованном высотой SO, боковым ребром SD=15 и проекцией бокового ребра на основание DO, катет DO=18 будет больше гипотенузы SD=15. То есть, боковые ребра у пирамиды с такими размерами не сойдутся сверху в вершину S.

В условии задачи ОШИБКА! Такая пирамида не существует.

Тогда рассмотрим решение этой задачи в общем случае. Пусть боковые ребра SA=SB=SC=SD=SE=SF=b, стороны основания AB=BC=CD=DE=EF=AF=a.

Площадь боковой поверхности пирамиды состоит из шести равных равнобедренных треугольников.

ΔESD - равнобедренный, SE=SD=b, ED=a. Высота равнобедренного треугольника SK также является медианой ⇒ EK=KD=a/2

ΔSKD - прямоугольный, ∠SKD=90°. По теореме Пифагора

SD² = SK² + KD² ⇒ SK² = SD² - KD² = b² - (a/2)²

\boldsymbol{SK=\sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}}

S_{SED}=\dfrac{ED\cdot SK}{2}=\dfrac{a\cdot \sqrt{b^2-(\frac{a}{2})^2}}{2}

Площадь боковой поверхности пирамиды

\boxed {\boldsymbol {S = 6\cdot S_{SED}=3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}}}

===========================================

Допустим, боковое ребро пирамиды b=13, сторона основания a=10

S = 3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}} = 3\cdot 10\cdot \sqrt{13^2-\Big(\dfrac{10}{2}\Big)^2} =\\ \\ ~~~~=30\cdot \sqrt{169-25} =30\cdot 12=360

==============================================

Допустим, боковое ребро пирамиды b=41, сторона основания a=18

S = 3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}} = 3\cdot 18\cdot \sqrt{41^2-\Big(\dfrac{18}{2}\Big)^2} =\\ \\ ~~~~=54\cdot \sqrt{1681-81} =54\cdot 40=2160


Стороны основания правильной шестиугольной пирамиды равны 18, боковые ребра равны 15. найдите площад
eeirikh
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.

25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая
25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая
25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая
autofilters27
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD.
Докажем второй пункт.  Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стороны основания правильной шестиугольной пирамиды равны 18, боковые ребра равны 15. найдите площадь боковой поверхности этой пирамиды.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

aistenok-28
zorinka777
shilinmikhaillg
innaterenina
smakarov76
Алиференко_Елена342
Олег86
moonligh3560
gymnazium
Елена_Зайкин1665
rimmaskis
Irina1435
Лифанов_Ольга
shchepinasm
megaromeo