Меньшая боковая стороны равна √2 S=полусумме оснований на высоту S=1/2(2√2+3√2)*√2=10
Alyona744
13.05.2020
Если провести прямую параллельную к одной из диагонали то получим прямоугольный треугольник, у которой гипотенуза будет равна сумме оснований трапеций . Так как трапеция равнобедренная то , диагонали равны, пусть они равны d, тогда гипотенуза она же сумма оснований будет равна d√2. Тогда высоту можно выразить как d^2/d√2 = 16 , d=16√2 тогда гипотенуза будет равна √2*(16√2)^2 = √2*256*2 =32. Тогда площадь будет равна S=(32/2)*16=256
2)Если не хотите мучатся , все это понимать, есть такая теорема что высота будет равна средней линий этой трапеций ( лишь в случае равнобедренности и перпендикулярности диагоналей) то есть m=h (m средняя линия треугольника) тогда средняя линия треугольника будет равна полусумме оснований то есть сумма оснований будет равна 16*2=32, и того S=32*16/2=256
zaha98
13.05.2020
В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. Доказательство: Пусть АБВ - равнобедренный треугольник , АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
15 . найдите площадь прямоугольной трапеции , основания которой 2√2 и 3√2, а большая боковая сторона равна 2
S=полусумме оснований на высоту
S=1/2(2√2+3√2)*√2=10