(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.
Поделитесь своими знаниями, ответьте на вопрос:
Диагонали ромба авсd пересекаются в точке о.на отрезке во как на диаметре построен круг.окружность, ограничивающая круг, пересекает сторону ав в точке т.известно, что аи=12√3см, а тв=9√3см.вычислите площадь части круга, расположенной вне ромба.
Значит, дуги ОT и ОL равны, значит и дуги ВТ и BL тоже равны. Т.е. площади закрашенных сегментов равны.
∠ВТО = 90° как вписанный, опирающийся на диаметр. Значит, ОТ - высота прямоугольного треугольника АВО.
ОТ² = ВТ · ТА = 9√3 · 3√3 = 81
ОТ = 9 см
ΔВТО: ∠Т = 90°. tg∠B = TO/BT = 9/(9√3) = 1/√3 ⇒ ∠TBO = 30°
⇒ BO = 2TO = 18 см, а радиус окружности BK = KO = KT = 9 см
ΔВКТ равнобедренный, ⇒∠КТВ = ∠КВТ = 30° ⇒ ∠BKT = 120°
Sсегм = Sсект - SΔbkt = π · KB² · 120° / 360° - 1/2·BK·KT·sin120° =
= π · 81 / 3 - 1/2· 81· √3/2 = 27π - 81√3/4
Площадь круга вне ромба в 2 раза больше:
Sкр = 54π - 81√3/2