Дано:
a=7см
b=24см
Найти:
Sin, Cos, tg острого угла - ?
с=√7²+24²=√49+576=√625=25 см
против большей стороны лежит больший угол, и наоборот, против меньшей - меньший угол B < углу A ⇒ ищем Sin, Cos, tg острого угола А (см рисунок)
Синус - это отношение противолежащего катета к гипотенузе ⇒ SinA=BC/AB=24/25
Косинус - это отношение прилежащего катета к гипотенузе ⇒ CosA=AC/AB=7/25
Тангенс - это отношение противолежащего катета к прилежащему или отношение синуса к косинусу ⇒ tgA=BC/AC=24/7 или tgA=SinA/CosA=(24/25)/(7/25)=24/7
ответ: Sin большего острого угла равен 24/25, Cos большего острого угла равен 7/25, tg большего острого угла равен 24/7
Объяснение:
Возьмем произвольный четырёхугольник ABCD у которого диагонали перпендикулярны см рис
координаты точек А(0;0), В(3;5,2), С(9;5,2), Д(6;0), В₁(1,5;2,6), Д₁(3;0)
Т . В₁ и Д₁ середины АВ и AD
из этих точек найдем уравнение прямой ⊥ СД и ВС
уравнение прямой СД по двум точкам С, Д у₁=1,73х-10,4
уравнение прямой А₁Д₁ ⊥ ВС: х=3
уравнение прямой А₁В₁ ⊥ СД: у₂=-0,58х+3,47
Прямая, проходящая через точку В₁(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
(х-х₀)/А=(у-у₀)/В
Уравнение прямой :
(х-1,5)/(-1,73)=(у-2,6)/1 ⇒ y₂ = -0.58x + 3.47
найдем точку пересечения прямых А₁
х=3
y₂ = -0.58x + 3.47
А₁(3;1,74)
прямая АС имеет уравнение у₃=0,58х
сравним ординату точки пересечения А₁ 1,74 со значением у₃ при х=3
у₃=0,58*3=1,74
Координаты точек совпадают
Что и следовало доказать
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь боковой поверхности правильной шестиугольной призмы сторона основания которой равна 4 см, а высота 10 см.
Sб.п.=4*6*10=240