ответ: Пусть ABC — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Объяснение: Из теоремы следует, что у любого треугольника не меньше двух острых углов. Действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°.
Поделитесь своими знаниями, ответьте на вопрос:
Тангенс угла между плоскостью боковой грани правильной треугольной пирамиды и плоскостью её основания равен 5. найдите тангенс угла между боковым ребром и плоскостью основания пирамиды.
В сечении получим заданный угол α между плоскостью боковой грани правильной треугольной пирамиды и плоскостью её основания и искомый угол β между боковым ребром и плоскостью основания пирамиды.
Обозначим высоту пирамиды х, проекцию апофемы на основание у.
По свойству медианы основания проекция бокового ребра на основание равна 2y.
Тогда tg α = x/y = 5.
tg β = x/(2y) = (1/2)*5 = 2,5.