Площадь основания конуса равна 27·π см².
Объяснение:
Сечение - равнобедренный прямоугольный треугольник с катетами - образующими конуса, не является осевым, так как образующая конуса наклонена к плоскости основания конуса под углом 30° (дано). =>
S = (1/2)·L² = 18 см² (дано) =>
L = 6 см.
В прямоугольном треугольнике, образованном высотой, радиусом (катеты) и гипотенузой (образующая), против угла 30° лежит катет (высота), равный половине гипотенузы (образующая конуса) =>
h = 3 cм.
По Пифагору R² = L² h² = 36 - 9 = 27 см². =>
R = 3√3 см. Тогда
S = π·R² = 27π.
Поделитесь своими знаниями, ответьте на вопрос:
Отрезоз cd-диаметр окружности . отрезок ac-хорда этой окружности и ac: cd = 1: 2 . точка а удалена от прямой св на расстояние , равное 3 см . вычислите площадь треугольника acd и длину радиуса окружности 50
Неточность в вопросе: точка А удалена от прямой CD на расстояние, равное 3 см.
Sacd = 6√3 см²R = 2√3 смОбъяснение:
∠DАС вписанный, опирается на полуокружность, значит
∠DАС = 90°.
АС - катет, равен половине гипотенузы, значит лежит против угла в 30°:
∠ADC = 30°.
ΔAHD: ∠АНD = 90°, ∠ADH = 30°, ⇒ AD = 2AH = 2 · 3 = 6 см
Обозначим радиус окружности R. Тогда CD = 2R, AC = CD/2 = R/
По теореме Пифагора из треугольника ACD:
AC² + AD² = CD²
R² + 36 = 4R²
3R² = 36
R² = 12
R = 2√3 см
AC = 2√3 см,
Sacd = 1/2 AC · AD = 1/2 · 2√3 · 6 = 6√3 см²