Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном треуголнике dce с прямым углом c проведена биссектриса ef причём fc=13см найдите расстояние от точки f до прямой de
Построим перпендикуляр FN.
Рассмотрим ΔFCE и ΔFNE:
∠СЕF = ∠NЕF = 90°
EF - общая гипотенуза
∠FЕС = ∠FEN (т.к. EF биссектриса ∠СЕD)
Следовательно, ΔFCE = ΔFNE.
В равных Δ против равных углов лежат равные стороны ⇒ FN=FC=13 cм
ответ: 13 см.