22,91 м
Объяснение:
Если голуби, стартовавшие синхронно и с одинаковой скоростью, долетели до зерна одновременно, значит, образованные фонарем, домом, землей и траекторией полета голубей два прямоугольных треугольника будут иметь равные гипотенузы (траектории полета голубей).
У одного треугольника катеты будут соответственно равны высоте дома (15 м) и отрезку земли до места, где Анна рассыпала зерно, обозначим его x м.
У другого треугольника катеты будут соответственно равны высоте фонарного столба (4 м) и отрезку земли до места, где Анна рассыпала зерно:
(50 - x) м.
Так как гипотенузы треугольников равны, то на основании теоремы Пифагора, согласно которому квадрат гипотенузы равен квадрату катетов, можно составить уравнение:
15² + х² = 4² + (50 – х)²
225 + х² = 16+2500-100х+х²
х²-х²+100х=2516-225
100х=2291
х=2291:100
х=22,91 м
расстояние от дома до места, где рассыпано зерно, составляет 8 м.
Объяснение:
Если голуби, стартовавшие синхронно и с одинаковой скоростью, долетели до зерна одновременно, значит, образованные фонарем, домом, землей и траекторией полета голубей два прямоугольных треугольника будут иметь равные гипотенузы (траектории полета голубей).
У одного треугольника катеты будут соответственно равны высоте дома (15 м) и отрезку земли до места, где Анна рассыпала зерно, обозначим его Х м.
У другого треугольника катеты будут соответственно равны высоте фонарного столба (8 м) и отрезку земли до места, где Анна рассыпала зерно:
23 - Х м.
Так как гипотенузы треугольников равны, то на основании теоремы Пифагора, согласно которому квадрат гипотенузы равен квадрату катетов, можно составить уравнение:
с2 = 152 + Х2 = 82 + (23 – Х) 2;
152 + Х2 = 82 + 232 – 2 * 23 * Х + Х2;
152 + Х2 = 82 + 232 – 2 * 23 * Х + Х2;
152 = 82 + 232 – 2 * 23 * Х;
225 = 64 + 529 – 46 * Х;
46 * Х = 64 + 529 – 225;
46 * Х = 368;
Х = 368 : 46;
Х = 8.
Поделитесь своими знаниями, ответьте на вопрос:
4.в окружности проведены две хорды ab и cd, пересекающиеся в точке м, мв = 5 см, ам = 6 см, dс = 24 см. найдите длины см и dm .
То теореме о пересекающихся хордах АМ·ВМ=СМ·ДМ,
6·5=х(24-х),
30=24х-х²,
х²-24х+30=0, корни квадратного уравнения:
х1=12-√114, х2=12+√114.
СМ=12-√114 см, ДМ=24-(12-√114)=12+√114 см, или наоборот. Это ответ.