Yuliya-Tsaryova
?>

Радиус основания конуса равен 6см, а его образующая наклонена к плоскости основания под углом 60°. найдите площадь сечения, проходящего через две образующие, угол между которыми равен 45° и площадь боковой поверхности конуса

Геометрия

Ответы

natalya2321
1)Рассмотрим прямоуг. тр-к, образованный высотой h,радиусом осн-я r и образующей l:
угол между высотой и образующей 30 гр, значит, l=12 см (катет против угла в 30 гр равен половине гипотенузы) .
2)Сечение-равнобедр. тр-к, бок. сторона которого 12 см, а угол при вершине 45 гр.
Sсеч=Sтр=absinC/2;Sсеч=12²sin45/2=36V2(кв. см) .
3)Sбок=pirl;Sбок=pi*6*12=72pi (кв. см).
kirillboytsov403

∠А = 36,34°; ∠В = 117,28°;  ∠С = 26,38°.

Объяснение:

1) По теореме косинусов:

a^2 = b^2 + c^2 + 2bc*cos (α),

откуда  

cos (α) = (b^2 + c^2 - a^2) / 2bc .

2) Обозначим углы и стороны:

∠ А = α

∠ В = β

∠ С = Δ

а = ВС (лежит против угла α)

b = АС (лежит против угла β)

с = АВ (лежит против угла Δ).

3) cos (α) = (b^2 + c^2 - a^2) / 2bc = (6^2 + 3^2 - 4^2) / (2*6*3) =

(36+9-16)/36 = 29/36 = 0,8055 55

По таблице косинусов находим, какой это угол:

α = arccos 0,8055 55 = 36,34°.

∠А = 36,34°.

4) Находим второй острый угол (он лежит против стороны 3 см и должен получиться меньше угла α):

cos (Δ) = (b^2 + а^2 - с^2) / 2ab = (6^2 + 4^2 - 3^2) / (2*6*4) =

(36+16-9)/48 = 43/48 = 0,8958 33

По таблице косинусов находим, какой это угол:

α = arccos 0,8958 33 = 26,38°.

∠С = 26,38°.

5) Находим третий угол:

180 - 36,34 - 26,38 = 117,28°.

∠В = 117,28°.

ответ: ∠А = 36,34°; ∠В = 117,28°;  ∠С = 26,38°.

suhanowaswetlana
Я не знаю, что это за "метод", наверно, опять в минобразе что-то придумали. Но с векторов свойство медианы я бы так доказывал.
Пусть есть два вектора a и b, которые полностью определяют треугольник со сторонами a и b (эти стороны "выходят" из общей вершины). Если соединить конец вектора a с серединой вектора b, то получится вектор m, соответствующий медиане m к стороне b. Точно также строится медиана n к стороне a.
Очевидно, что m = b/2 - a; n = a/2 - b;
Пусть точка пересечения медиан делит медиану m в пропорции k/(1 - k); а медиану n в пропорции p/(1 - p);
Тогда  a + km = b + pn; так как у этих векторов совпадают начало и конец :).
a + k(b/2 - a) = b + p(a/2 - b);
или a(1 - k - p/2) = b(1 - p - k/2);
Вот это соотношение и было нужно, из него все получается автоматически.
Поскольку a и b - ненулевые и неколлинеарные вектора, то
1 - k - p/2 = 0;
1 - p - k/2 = 0;
решение этой простенькой системы k = p = 2/3;
То есть точка пересечения двух медиан делит их в пропорции 2/1;
(Само собой, и третья медиана тоже проходит через эту же точку).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Радиус основания конуса равен 6см, а его образующая наклонена к плоскости основания под углом 60°. найдите площадь сечения, проходящего через две образующие, угол между которыми равен 45° и площадь боковой поверхности конуса
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Vrpeshka
vmnk38
MonashevFesenko1483
Никита_Тузов
Алексеевна_Валентиновна
bogdanovaoksa
janetp
Лусине_Ильенков134
ivanandrieiev1984268
rb-zakaz
АнтонАртем
balabina-Olesya
Станислав Роман994
nataljatchetvertnova
Stanislavovna1237