mvolkov8
?>

Нарисован равнобедренный треугольник кокова сумма углов

Геометрия

Ответы

pafanasiew
Смотря какой треугольник, они вообще то разные бывают
Rizhov Alekyan325
В каждом треугольнике сумма углов будет равен 180. В равнобедренном треугольнике углы лежащие рядом с основанием равны Думаю, что это не полное задание.
roman-fetisov2005
По теореме косинусов
c^2 = a^2 + b^2 - 2ab*cos (гамма)
15^2 = 12^2 + b^2 - 2*12*b*cos(120) = 12^2 + b^2 - 24b*(-1/2)
225 = 144 + b^2 + 12b
b^2 + 12b - 81 = 0
D/4 = 6^2 + 81 = 36 + 81 = 117 = (3√13)^2
b = -6 + 3√13 = 3√13 - 6 ~ 4,81 
По теореме синусов
a/sin(альфа) = b/sin(бета) = c/sin(гамма)
sin(гамма) = sin(120) = √3/2
c/sin(гамма) = 15 / (√3/2) = 15*2/√3 = 30√3/3 = 10√3
sin(альфа) = a / (c/sin(гамма)) = 12 / (10√3) = 
= 12√3/(10*3) = 2√3/5 ~ 0,6928; 
альфа ~ 43,85 градуса 
sin(бета) = b / (c/sin(гамма)) = (3√13 - 6) / (10√3) = 
= (3√13 - 6)*√3 / (10*3) = (√13 - 2)*√3 / 10 ~ 0,278; 
бета ~ 16,15 градусов
snab54
По теореме косинусов
c^2 = a^2 + b^2 - 2ab*cos (гамма)
15^2 = 12^2 + b^2 - 2*12*b*cos(120) = 12^2 + b^2 - 24b*(-1/2)
225 = 144 + b^2 + 12b
b^2 + 12b - 81 = 0
D/4 = 6^2 + 81 = 36 + 81 = 117 = (3√13)^2
b = -6 + 3√13 = 3√13 - 6 ~ 4,81 
По теореме синусов
a/sin(альфа) = b/sin(бета) = c/sin(гамма)
sin(гамма) = sin(120) = √3/2
c/sin(гамма) = 15 / (√3/2) = 15*2/√3 = 30√3/3 = 10√3
sin(альфа) = a / (c/sin(гамма)) = 12 / (10√3) = 
= 12√3/(10*3) = 2√3/5 ~ 0,6928; 
альфа ~ 43,85 градуса 
sin(бета) = b / (c/sin(гамма)) = (3√13 - 6) / (10√3) = 
= (3√13 - 6)*√3 / (10*3) = (√13 - 2)*√3 / 10 ~ 0,278; 
бета ~ 16,15 градусов

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Нарисован равнобедренный треугольник кокова сумма углов
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

household193
mileva84
Shcherbakov_Artur1781
Nataliefremova2015808
Gaziev1636
Лилин1079
chavagorin
Vitalik6928
ann-perminova2008
Yevgenevich_Chipura-Nikolaeva
Kostyuchik-Astakhov531
Freelifecool797
asnika1989
T91610933073266
Borshchev1820