А(- 1; 6), В(- 1; - 2)
Найдем длину диаметра по формуле расстояния между точками:
АВ = √((x₁ - x₂)² + (y₁ - y₂)²) = √((- 1 + 1)² + (6 + 2)²) = √(0 + 64) = 8.
Тогда радиус равен:
R = AB/2 = 4
Координаты центра найдем как координаты середины отрезка АВ:
x₀ = (x₁ + x₂)/2, y₀ = (y₁ + y₂)/2
x₀ = (- 1 - 1)/2 = - 1, y₀ = (6 - 2)/2 = 2
О(- 1; 2)
Уравнение окружности:
(x - x₀)² + (y - y₀)² = R²
(x + 1)² + (y - 2)² = 16
Уравнение прямой, проходящей через центр окружности и параллельной оси Ох:
у = 2.
Уравнение прямой, проходящей через центр окружности и параллельной оси Оу:
х = - 1.
Объяснение:
Решение.
Для решения этой задачи используем формулу номер два из теоретической части урока.
Площадь треугольника может быть найдена через длины двух сторон и синус угла межу ними и будет равна
S=1/2 ab sin γ
Поскольку все необходимые данные для решения (согласно формуле) у нас имеются, нам остается только подставить значения из условия задачи в формулу:
S = 1/2 * 5 * 6 * sin 60
В таблице значений тригонометрических функций найдем и подставим в выражение значение синуса 60 градусов. Он будет равен корню из трех на два.
S = 15 √3 / 2
ответ: 7,5 √3 (в зависимости от требований преподавателя, вероятно, можно оставить и 15 √3/2)
Поделитесь своими знаниями, ответьте на вопрос:
Могут ли точки a, b и c лежать на одной прямой, если ab = 4, 3 см, bc =1, 1 см и ac = 3, 1 см?
3,1+1,1≠4,3
Предположим , что на АС, тогда АС=АВ+ВС
3,1≠4,3+1,1
Предположим , что на ВС
Тогда ВС=АВ+ВС
1,1≠4,3+3,1