они действительно равны
Объяснение:
Пусть <ABB1 = x, тогда если <BB1A = 90 градусов (т.к. BB1 - высота), то ABB1 = (180 - 90 - x) градусов = (90 - x) градусов. Т.к. <BAC - вписанный для дуги BC, а <BOC - центральный для этой же дуги BC, то <BOC = 2*<BAC = 2*(90 - x)градусов = (180 - 2x) градусов. Очевидно, что BO = OC = R, тогда треугольник BOC - равнобедренный, тогда <CBO = <BCO = (180 - < BOC) / 2 = (180 - (180 - 2x)) / 2 = 2x / 2 = x. Следовательно <ABB1 = <CBO = x.
Поделитесь своими знаниями, ответьте на вопрос:
Боковое ребро правильной четырехугольной призмы равно 8 см, а сторона основания 5 см. найти объём призмы.
V=S*h; - объём призмы.
S - площадь основания (5*5=25 см.²), а h - высота призмы (равна боковому ребру).
V=5*5*8=200 см³