Дано:
ΔABC - прямоугольный (∠A = 90°)
AB = 14
AE = 4
EB = 10
ED = 6
(•) D - середина гипотенузы (BC)
Найти:
AC
• Пусть половина гипотенузы (BC) = x, т.е.:
CD = DB = x
• Рассмотрим ΔEDB, по теореме косинусов:
ED² = EB² + DB² - 2 • EB • DB • cos∠CBD
( cos∠CBD = AB/CB = 14/2x )
6² = 10² + x² - 2 • 10 • x • 14/2x
36 = 100 + x² - 20x • 14/2x
36 = 100 + x² - 140
x² - 76 = 0
x² = 76
x = √76
x = √(4 • 19)
x = 2√19
• Находим гипотенузу:
BC = 2 • x = 2 • 2√19 = 4√19
• В прямоугольном треугольнике ABC по теореме Пифагора:
BC² = AB² + AC², ⇒ AC = √(BC² - AB²)
AC = √((4√19)² - 14²) = √(304 - 196) = √108 = 6√3
ответ: AC = 6√3
1) AB = 17
2) S = 60
3) ∠AED = 
∠EDA = 
Объяснение:
По свойству биссектрисы 
Пусть AB = 17x, AC = 8x. Тогда периметр треугольника 40 = 10,2 + 4,8 + 17х + 8х = 15 + 25х ⇒ х = 1 ⇒ AB = 17, AC = 8; BC = 10,2 + 4,8 = 15.
Заметим, что AC² + BC² = 8² + 15² = 289 = 17² = AB², то есть треугольник прямоугольный с прямым углом C по теореме, обратной теореме Пифагора. Его площадь
.
∠AED = 180° - ∠CED = 180° - ∠A = 
Треугольники ABC и EDC подобны по двум углам (∠C — общий, ∠A = ∠E по параллельности AB и DE). 
∠EDA = ∠CDA - ∠CDE = 
Поделитесь своими знаниями, ответьте на вопрос:
Положим что это точка H .
L,K середины AS, CS соответсвенно , также положим что B1K пересекает BC в точке X , можно теореме Менелая , тогда
BB1/B1S * SK/KC * CX/BX=1
Или (20-5)/5*(1/1)* (CX/(24+CX))=1 , откуда CX=12 , значит BX=36. Аналогично если Y точка пересечения LB1 с AB , тогда BY=36 .
Опустим высоту из точки B1 на основание , основание высоты N будет лежат на диагонали . Найдём B1N , подобия треугольников SHB и B1NB , тогда SH/B1N = 4/3
по теореме Пифагора SH=sqrt(BS^2 - BH^2) = sqrt(BS^2-(BD/2)^2) = sqrt(20^2-(12 sqrt(2))^2)= sqrt(112) , значит B1N = 3*sqrt(7) и BN=sqrt(15^2-9*7)=9*sqrt(2) . XBY равнобедренный и прямоугольный треугольник , положим что M точка пересечения BN и XY , тогда BM=36*sqrt(2) , и MN=BM-BN= 36*sqrt(2)-9*sqrt(2) = 27*sqrt(2) .
Тогда если "a" это угол между плослкостью основания и данной плосокостью то
tga=B1N/MN = 3*sqrt(7) / 27*sqrt(2) = sqrt(14)/18 , откуда
a=arctg(sqrt(14)/18) .