Не понятно какая точка равноудалена: Е или Р, и где находится точка Р тогда. Расстояние от точки до прямой это перпендикуляр, значит PB перпендикулярна ВС, РМ перпендикулярна AD, PK перпендикулярна CD и надо доказать что PB=PM=PK. 1. Рассмотрим четырёхугольник PKDM. В нём два треугольника, образованные биссектриссой DP. Угол KPD=90-уголKDP (по свойству но сумме углов прямоугольного треугольника). Угол DPM=90-уголMDP. Но углы KDP и MDP равны, значит углы KPD и DPM равны. 2. Прямоугольный треугольники KPD и MPD равны по острым углам и гипотенузе, следователь PK=PM. 3. Аналогично доказывается что в четырёхугольнике PBCK треугольники CKP и СВР равны и PB=PK. РВ=РК=РМ ч.т.д.
maroseyka
20.03.2020
У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
contact
20.03.2020
Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Биссектрисы углов с и d трапеции abcd пересекаются в точке e, лежащей на стороне ab. доказать, что точка p равноудалена от прямых bc , cd , ad
Расстояние от точки до прямой это перпендикуляр, значит PB перпендикулярна ВС, РМ перпендикулярна AD, PK перпендикулярна CD и надо доказать что PB=PM=PK.
1. Рассмотрим четырёхугольник PKDM.
В нём два треугольника, образованные биссектриссой DP. Угол KPD=90-уголKDP (по свойству но сумме углов прямоугольного треугольника). Угол DPM=90-уголMDP. Но углы KDP и MDP равны, значит углы KPD и DPM равны.
2. Прямоугольный треугольники KPD и MPD равны по острым углам и гипотенузе, следователь PK=PM.
3. Аналогично доказывается что в четырёхугольнике PBCK треугольники CKP и СВР равны и PB=PK.
РВ=РК=РМ ч.т.д.