№2
если В треугольнике медина является биссектрисой, то такой треугольник равнобедренный:
АВ=ВС; АД=ДС(т к ВД - медиана) =>
АВ+АД=ВС+ДС;
Равс=АВ+АД+ВС+ДС=2(АБ+АД)
АБ+АД=Рабд-ВД=11см;
Равс=2*11=22
ответ: 22 см
№3
Такого треугольника не существует, так как периметр не может быть мень суммы двух сторон треугольника(7<5+3)
ответ: нет решения
№4
Высота, проведенная к основанию равнобедренного треугольника, является биссектрисой => ВАК=ВАС/2=23. ВКА=90(т к АК-высота)
ответ: 23, 90
№5
Наверняка вместе с условием к этой задаче прилагался готовый чертеж, так как без него ее не решить, ведь я не могу знать какой именно угол 1, а какой 2
№6
По теореме о сумме углов в треугольнике:
АСВ=180-МВС-МАС=180-90=90
ответ: 90
№7
Это тупоугольный треугольник
№8
Пусть медиана и биссектриса пересекаются в точке О
треугольники ВАО и МАО прямоугольные так как АД перпендикулярна ВМ, в них
ВАО=МАО(АД-биссектриса)
АО - общий => МОА=ВОА по катету и острому углу => АВ=АМ=АС/2=6см
ответ: 6 см
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике авс сторона вс равна а. на стороне ав взяты точки м и n , делящие ее на три равные части. через м и n проведены прямые, параллельные вс. найдите отрезки этих прямых, расположенные внутри треугольника авс
Дано: AM=MN=NB и МК||NP||BC.
Проведем МЕ и ND параллельно АС.
Теорема Фалеса Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
BD=DE=EC.
Если в четырехугольниках стороны взаимно параллельны, то они - параллелограммы. МЕСК и РNDC- параллелограммы
МК=ЕС=а/3
MP=DC=а•2/3
-----------
Разумеется, задачу можно решать и через подобие треугольников. Это будет немного дольше и не так наглядно.