1. Рассмотрим прямоугольный треуг-ик ABD. Здесь катет АВ, лежащий против угла в 30°, равен половине гипотенузы AD: AB=1/2AD, AD=2AB Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим угол А: <A=90-<ADB=90-30=60° Угол D в трапеции ABCD равен: <D=30+30=60° Углы при основании трапеции равны, значит, она равнобедренная, и АВ=CD. Рассмотрим треугольник BCD. <CBD=<ADB как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей BD. <CDB=30°, значит треугольник BCD равнобедренный, поскольку углы при его основании BD равны. ВС=CD. Но CD=AB, значит ВС=CD=AB Таким образом мы можем принять АВ, ВС, CD за х, а AD - за 2х (т.к. AD=2AB см. выше). Зная периметр, запишем: AB+BC+CD+AD=P x+x+x+2x=60 5x=60x=12 AD=2*12=24 см
2. Рассмотрим прямоугольный треуг-ик АЕВ. Он равнобедренный по условию (диагональ ВЕ равна стороне АЕ, она будет равна и стороне ВС). В равнобедренном треуг-ке углы при основании равны. Найдем их: <A=<ABE=(180-<AEB):2=(180-90):2=45° Поскольку противоположные углы параллелограмма равны, то <C=<A=45° <ABC=<AEC=90+<ABE=90+45=135°
vmnk38
26.09.2021
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Отрезок ab касается окружности в точке b. найдите радиус окружности, если ab = 6 и oa = 10
ответ: вроде 4
Объяснение: 10-6=4